Documentation

Mathlib.CategoryTheory.Limits.Shapes.CombinedProducts

Constructors for combining (co)fans #

We provide constructors for combining (co)fans and show their (co)limit properties.

TODO #

@[reducible, inline]
abbrev CategoryTheory.Limits.Fan.combPairHoms {C : Type u₁} [CategoryTheory.Category.{u₂, u₁} C] {ι₁ : Type u_1} {ι₂ : Type u_2} {f₁ : ι₁C} {f₂ : ι₂C} (c₁ : CategoryTheory.Limits.Fan f₁) (c₂ : CategoryTheory.Limits.Fan f₂) (bc : CategoryTheory.Limits.BinaryFan c₁.pt c₂.pt) (i : ι₁ ι₂) :
bc.pt Sum.elim f₁ f₂ i

For fans on maps f₁ : ι₁ → C, f₂ : ι₂ → C and a binary fan on their cone points, construct one family of morphisms indexed by ι₁ ⊕ ι₂

Equations
Instances For
    def CategoryTheory.Limits.Fan.combPairIsLimit {C : Type u₁} [CategoryTheory.Category.{u₂, u₁} C] {ι₁ : Type u_1} {ι₂ : Type u_2} {f₁ : ι₁C} {f₂ : ι₂C} {c₁ : CategoryTheory.Limits.Fan f₁} {c₂ : CategoryTheory.Limits.Fan f₂} {bc : CategoryTheory.Limits.BinaryFan c₁.pt c₂.pt} (h₁ : CategoryTheory.Limits.IsLimit c₁) (h₂ : CategoryTheory.Limits.IsLimit c₂) (h : CategoryTheory.Limits.IsLimit bc) :

    If c₁ and c₂ are limit fans and bc is a limit binary fan on their cone points, then the fan constructed from combPairHoms is a limit cone.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.Limits.Cofan.combPairHoms {C : Type u₁} [CategoryTheory.Category.{u₂, u₁} C] {ι₁ : Type u_1} {ι₂ : Type u_2} {f₁ : ι₁C} {f₂ : ι₂C} (c₁ : CategoryTheory.Limits.Cofan f₁) (c₂ : CategoryTheory.Limits.Cofan f₂) (bc : CategoryTheory.Limits.BinaryCofan c₁.pt c₂.pt) (i : ι₁ ι₂) :
      Sum.elim f₁ f₂ i bc.pt

      For cofans on maps f₁ : ι₁ → C, f₂ : ι₂ → C and a binary cofan on their cocone points, construct one family of morphisms indexed by ι₁ ⊕ ι₂

      Equations
      Instances For
        def CategoryTheory.Limits.Cofan.combPairIsColimit {C : Type u₁} [CategoryTheory.Category.{u₂, u₁} C] {ι₁ : Type u_1} {ι₂ : Type u_2} {f₁ : ι₁C} {f₂ : ι₂C} {c₁ : CategoryTheory.Limits.Cofan f₁} {c₂ : CategoryTheory.Limits.Cofan f₂} {bc : CategoryTheory.Limits.BinaryCofan c₁.pt c₂.pt} (h₁ : CategoryTheory.Limits.IsColimit c₁) (h₂ : CategoryTheory.Limits.IsColimit c₂) (h : CategoryTheory.Limits.IsColimit bc) :

        If c₁ and c₂ are colimit cofans and bc is a colimit binary cofan on their cocone points, then the cofan constructed from combPairHoms is a colimit cocone.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For