Cocones associated to principal segments #
If f : α <i β
is a principal segment and F : β ⥤ C
,
there is a cocone for f.monotone.functor ⋙ F : α ⥤ C
the point of which is F.obj f.top
.
def
PrincipalSeg.cocone
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
(F : CategoryTheory.Functor β C)
:
When f : α <i β
and a functor F : β ⥤ C
, this is the cocone
for f.monotone.functor ⋙ F : α ⥤ C
whose point if F.obj f.top
.
Equations
Instances For
@[simp]
theorem
PrincipalSeg.cocone_ι_app
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
(F : CategoryTheory.Functor β C)
(i : α)
:
@[simp]
theorem
PrincipalSeg.cocone_pt
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
(F : CategoryTheory.Functor β C)
: