Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.IsPullback.BicartesianSq

Bi-Cartesian squares #

BicartesianSq f g h i is the proposition that

  W ---f---> X
  |          |
  g          h
  |          |
  v          v
  Y ---i---> Z

is a pullback square and a pushout square.

We show that the pullback and pushout squares for a biproduct are bi-Cartesian.

structure CategoryTheory.BicartesianSq {C : Type u₁} [Category.{v₁, u₁} C] {W X Y Z : C} (f : W X) (g : W Y) (h : X Z) (i : Y Z) extends CategoryTheory.IsPullback f g h i, CategoryTheory.IsPushout f g h i :

A bi-Cartesian square is a commutative square

  W ---f---> X
  |          |
  g          h
  |          |
  v          v
  Y ---i---> Z

that is both a pullback square and a pushout square.

Instances For
    @[simp]

    The square with 0 : 0 ⟶ 0 on the left and 𝟙 X on the right is a pullback square.

    @[simp]

    The square with 0 : 0 ⟶ 0 on the top and 𝟙 X on the bottom is a pullback square.

    @[simp]

    The square with 0 : 0 ⟶ 0 on the right and 𝟙 X on the left is a pullback square.

    @[simp]

    The square with 0 : 0 ⟶ 0 on the bottom and 𝟙 X on the top is a pullback square.

    @[simp]

    The square

      X --inl--> X ⊞ Y
      |            |
      0           snd
      |            |
      v            v
      0 ---0-----> Y
    

    is a pullback square.

    @[simp]

    The square

      Y --inr--> X ⊞ Y
      |            |
      0           fst
      |            |
      v            v
      0 ---0-----> X
    

    is a pullback square.

    @[simp]

    The square with 0 : 0 ⟶ 0 on the right and 𝟙 X on the left is a pushout square.

    @[simp]

    The square with 0 : 0 ⟶ 0 on the bottom and 𝟙 X on the top is a pushout square.

    @[simp]

    The square with 0 : 0 ⟶ 0 on the right left 𝟙 X on the right is a pushout square.

    @[simp]

    The square with 0 : 0 ⟶ 0 on the top and 𝟙 X on the bottom is a pushout square.

    The square

      X --inl--> X ⊞ Y
      |            |
      0           snd
      |            |
      v            v
      0 ---0-----> Y
    

    is a pushout square.

    The square

      Y --inr--> X ⊞ Y
      |            |
      0           fst
      |            |
      v            v
      0 ---0-----> X
    

    is a pushout square.

    theorem CategoryTheory.BicartesianSq.of_isPullback_isPushout {C : Type u₁} [Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p₁ : IsPullback f g h i) (p₂ : IsPushout f g h i) :
    theorem CategoryTheory.BicartesianSq.flip {C : Type u₁} [Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p : BicartesianSq f g h i) :
     X ⊞ Y --fst--> X
       |            |
      snd           0
       |            |
       v            v
       Y -----0---> 0
    

    is a bi-Cartesian square.

       0 -----0---> X
       |            |
       0           inl
       |            |
       v            v
       Y --inr--> X ⊞ Y
    

    is a bi-Cartesian square.

    @[simp]
     X ⊞ Y --fst--> X
       |            |
      snd           0
       |            |
       v            v
       Y -----0---> 0
    

    is a bi-Cartesian square.

    @[simp]
       0 -----0---> X
       |            |
       0           inl
       |            |
       v            v
       Y --inr--> X ⊞ Y
    

    is a bi-Cartesian square.