Bi-Cartesian squares #
BicartesianSq f g h i is the proposition that
W ---f---> X
| |
g h
| |
v v
Y ---i---> Z
is a pullback square and a pushout square.
We show that the pullback and pushout squares for a biproduct are bi-Cartesian.
A bi-Cartesian square is a commutative square
W ---f---> X
| |
g h
| |
v v
Y ---i---> Z
that is both a pullback square and a pushout square.
- isLimit' : Nonempty (Limits.IsLimit (Limits.PullbackCone.mk f g ⋯))
- isColimit' : Nonempty (Limits.IsColimit (Limits.PushoutCocone.mk h i ⋯))
Instances For
The square with 0 : 0 ⟶ 0 on the left and 𝟙 X on the right is a pullback square.
The square with 0 : 0 ⟶ 0 on the top and 𝟙 X on the bottom is a pullback square.
The square with 0 : 0 ⟶ 0 on the right and 𝟙 X on the left is a pullback square.
The square with 0 : 0 ⟶ 0 on the bottom and 𝟙 X on the top is a pullback square.
The square
X --inl--> X ⊞ Y
| |
0 snd
| |
v v
0 ---0-----> Y
is a pullback square.
The square
Y --inr--> X ⊞ Y
| |
0 fst
| |
v v
0 ---0-----> X
is a pullback square.
The pullback of biprod.inl and biprod.inr is the zero object.
Equations
- CategoryTheory.IsPullback.pullbackBiprodInlBiprodInr = CategoryTheory.Limits.limit.isoLimitCone { cone := ⋯.cone, isLimit := ⋯.isLimit }
Instances For
The square with 0 : 0 ⟶ 0 on the right and 𝟙 X on the left is a pushout square.
The square with 0 : 0 ⟶ 0 on the bottom and 𝟙 X on the top is a pushout square.
The square with 0 : 0 ⟶ 0 on the right left 𝟙 X on the right is a pushout square.
The square with 0 : 0 ⟶ 0 on the top and 𝟙 X on the bottom is a pushout square.
The square
X --inl--> X ⊞ Y
| |
0 snd
| |
v v
0 ---0-----> Y
is a pushout square.
The square
Y --inr--> X ⊞ Y
| |
0 fst
| |
v v
0 ---0-----> X
is a pushout square.
The pushout of biprod.fst and biprod.snd is the zero object.
Equations
- CategoryTheory.IsPushout.pushoutBiprodFstBiprodSnd = CategoryTheory.Limits.colimit.isoColimitCocone { cocone := ⋯.cocone, isColimit := ⋯.isColimit }
Instances For
X ⊞ Y --fst--> X
| |
snd 0
| |
v v
Y -----0---> 0
is a bi-Cartesian square.
0 -----0---> X
| |
0 inl
| |
v v
Y --inr--> X ⊞ Y
is a bi-Cartesian square.
X ⊞ Y --fst--> X
| |
snd 0
| |
v v
Y -----0---> 0
is a bi-Cartesian square.
0 -----0---> X
| |
0 inl
| |
v v
Y --inr--> X ⊞ Y
is a bi-Cartesian square.