Documentation

Mathlib.CategoryTheory.Limits.Types.Images

Images in the category of types #

In this file, it is shown that the category of types has categorical images, and that these agree with the range of a function.

def CategoryTheory.Limits.Types.Image {α β : Type u} (f : α β) :

the image of a morphism in Type is just Set.range f

Equations
Instances For
    def CategoryTheory.Limits.Types.Image.ι {α β : Type u} (f : α β) :
    Image f β

    the inclusion of Image f into the target

    Equations
    Instances For
      noncomputable def CategoryTheory.Limits.Types.Image.lift {α β : Type u} {f : α β} (F' : MonoFactorisation f) :
      Image f F'.I

      the universal property for the image factorisation

      Equations
      Instances For

        the factorisation of any morphism in Type through a mono.

        Equations
        Instances For
          noncomputable def CategoryTheory.Limits.Types.isImage {α β : Type u} (f : α β) :

          the factorisation through a mono has the universal property of the image.

          Equations
          Instances For

            Auxiliary lemma. Use limit_of_surjections_surjective instead.

            Given surjections ⋯ ⟶ Xₙ₊₁ ⟶ Xₙ ⟶ ⋯ ⟶ X₀, the projection map lim Xₙ ⟶ X₀ is surjective.