Images in the category of types #
In this file, it is shown that the category of types has categorical images, and that these agree with the range of a function.
noncomputable def
CategoryTheory.Limits.Types.Image.lift
{α β : Type u}
{f : α ⟶ β}
(F' : MonoFactorisation f)
:
the universal property for the image factorisation
Equations
- CategoryTheory.Limits.Types.Image.lift F' x = F'.e ↑(Classical.indefiniteDescription (fun (x_1 : α) => f x_1 = ↑x) ⋯)
Instances For
theorem
CategoryTheory.Limits.Types.Image.lift_fac
{α β : Type u}
{f : α ⟶ β}
(F' : MonoFactorisation f)
:
the factorisation of any morphism in Type through a mono.
Equations
- CategoryTheory.Limits.Types.monoFactorisation f = { I := CategoryTheory.Limits.Types.Image f, m := CategoryTheory.Limits.Types.Image.ι f, m_mono := ⋯, e := Set.rangeFactorization f, fac := ⋯ }
Instances For
the factorisation through a mono has the universal property of the image.
Equations
- CategoryTheory.Limits.Types.isImage f = { lift := CategoryTheory.Limits.Types.Image.lift, lift_fac := ⋯ }
Instances For
theorem
CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map_aux
{F : Functor ℕᵒᵖ (Type u)}
(hF : ∀ (n : ℕ), Function.Surjective (F.map (homOfLE ⋯).op))
:
Function.Surjective ((limitCone F).π.app (Opposite.op 0))
Auxiliary lemma. Use limit_of_surjections_surjective
instead.
theorem
CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map
{F : Functor ℕᵒᵖ (Type u)}
{c : Cone F}
(hc : IsLimit c)
(hF : ∀ (n : ℕ), Function.Surjective (F.map (homOfLE ⋯).op))
:
Function.Surjective (c.π.app (Opposite.op 0))
Given surjections ⋯ ⟶ Xₙ₊₁ ⟶ Xₙ ⟶ ⋯ ⟶ X₀
, the projection map lim Xₙ ⟶ X₀
is surjective.