Documentation

Mathlib.CategoryTheory.Linear.FunctorCategory

Linear structure on functor categories #

If C and D are categories and D is R-linear, then C ⥤ D is also R-linear.

Equations
def CategoryTheory.NatTrans.appLinearMap {R : Type u_1} [Semiring R] {C : Type u_2} {D : Type u_3} [Category.{u_4, u_2} C] [Category.{u_5, u_3} D] [Preadditive D] [Linear R D] {F G : Functor C D} (X : C) :
(F G) →ₗ[R] F.obj X G.obj X

Application of a natural transformation at a fixed object, as group homomorphism

Equations
Instances For
    @[simp]
    theorem CategoryTheory.NatTrans.appLinearMap_apply {R : Type u_1} [Semiring R] {C : Type u_2} {D : Type u_3} [Category.{u_4, u_2} C] [Category.{u_5, u_3} D] [Preadditive D] [Linear R D] {F G : Functor C D} (X : C) (α : F G) :
    (appLinearMap X) α = α.app X
    @[simp]
    theorem CategoryTheory.NatTrans.app_smul {R : Type u_1} [Semiring R] {C : Type u_2} {D : Type u_3} [Category.{u_5, u_2} C] [Category.{u_4, u_3} D] [Preadditive D] [Linear R D] {F G : Functor C D} (X : C) (r : R) (α : F G) :
    (r α).app X = r α.app X