Documentation

Mathlib.CategoryTheory.Localization.HomEquiv

Bijections between morphisms in two localized categories #

Given two localization functors L₁ : C ⥤ D₁ and L₂ : C ⥤ D₂ for the same class of morphisms W : MorphismProperty C, we define a bijection Localization.homEquiv W L₁ L₂ : (L₁.obj X ⟶ L₁.obj Y) ≃ (L₂.obj X ⟶ L₂.obj Y) between the types of morphisms in the two localized categories.

More generally, given a localizer morphism Φ : LocalizerMorphism W₁ W₂, we define a map Φ.homMap L₁ L₂ : (L₁.obj X ⟶ L₁.obj Y) ⟶ (L₂.obj (Φ.functor.obj X) ⟶ L₂.obj (Φ.functor.obj Y)). The definition Localization.homEquiv is obtained by applying the construction to the identity localizer morphism.

noncomputable def CategoryTheory.LocalizerMorphism.homMap {C₁ : Type u_2} {C₂ : Type u_3} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_8, u_2} C₁] [CategoryTheory.Category.{u_9, u_3} C₂] [CategoryTheory.Category.{u_10, u_5} D₁] [CategoryTheory.Category.{u_11, u_6} D₂] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] {X Y : C₁} (f : L₁.obj X L₁.obj Y) :
L₂.obj (Φ.functor.obj X) L₂.obj (Φ.functor.obj Y)

If Φ : LocalizerMorphism W₁ W₂ is a morphism of localizers, L₁ and L₂ are localization functors for W₁ and W₂, then this is the induced map (L₁.obj X ⟶ L₁.obj Y) ⟶ (L₂.obj (Φ.functor.obj X) ⟶ L₂.obj (Φ.functor.obj Y)) for all objects X and Y.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.LocalizerMorphism.homMap_map {C₁ : Type u_2} {C₂ : Type u_3} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_8, u_2} C₁] [CategoryTheory.Category.{u_10, u_3} C₂] [CategoryTheory.Category.{u_11, u_5} D₁] [CategoryTheory.Category.{u_9, u_6} D₂] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] {X Y : C₁} (f : X Y) :
    Φ.homMap L₁ L₂ (L₁.map f) = L₂.map (Φ.functor.map f)
    @[simp]
    theorem CategoryTheory.LocalizerMorphism.homMap_id {C₁ : Type u_2} {C₂ : Type u_3} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_10, u_2} C₁] [CategoryTheory.Category.{u_9, u_3} C₂] [CategoryTheory.Category.{u_11, u_5} D₁] [CategoryTheory.Category.{u_8, u_6} D₂] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] (X : C₁) :
    Φ.homMap L₁ L₂ (CategoryTheory.CategoryStruct.id (L₁.obj X)) = CategoryTheory.CategoryStruct.id (L₂.obj (Φ.functor.obj X))
    theorem CategoryTheory.LocalizerMorphism.homMap_comp {C₁ : Type u_2} {C₂ : Type u_3} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_9, u_2} C₁] [CategoryTheory.Category.{u_11, u_3} C₂] [CategoryTheory.Category.{u_8, u_5} D₁] [CategoryTheory.Category.{u_10, u_6} D₂] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] {X Y Z : C₁} (f : L₁.obj X L₁.obj Y) (g : L₁.obj Y L₁.obj Z) :
    Φ.homMap L₁ L₂ (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (Φ.homMap L₁ L₂ f) (Φ.homMap L₁ L₂ g)
    theorem CategoryTheory.LocalizerMorphism.homMap_comp_assoc {C₁ : Type u_2} {C₂ : Type u_3} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_9, u_2} C₁] [CategoryTheory.Category.{u_11, u_3} C₂] [CategoryTheory.Category.{u_8, u_5} D₁] [CategoryTheory.Category.{u_10, u_6} D₂] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] {X Y Z : C₁} (f : L₁.obj X L₁.obj Y) (g : L₁.obj Y L₁.obj Z) {Z✝ : D₂} (h : L₂.obj (Φ.functor.obj Z) Z✝) :
    theorem CategoryTheory.LocalizerMorphism.homMap_apply {C₁ : Type u_2} {C₂ : Type u_3} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_10, u_2} C₁] [CategoryTheory.Category.{u_11, u_3} C₂] [CategoryTheory.Category.{u_8, u_5} D₁] [CategoryTheory.Category.{u_9, u_6} D₂] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] {X Y : C₁} (G : CategoryTheory.Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) (f : L₁.obj X L₁.obj Y) :
    Φ.homMap L₁ L₂ f = CategoryTheory.CategoryStruct.comp (e.hom.app X) (CategoryTheory.CategoryStruct.comp (G.map f) (e.inv.app Y))
    theorem CategoryTheory.LocalizerMorphism.homMap_apply_assoc {C₁ : Type u_2} {C₂ : Type u_3} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_10, u_2} C₁] [CategoryTheory.Category.{u_11, u_3} C₂] [CategoryTheory.Category.{u_8, u_5} D₁] [CategoryTheory.Category.{u_9, u_6} D₂] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] {X Y : C₁} (G : CategoryTheory.Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) (f : L₁.obj X L₁.obj Y) {Z : D₂} (h : L₂.obj (Φ.functor.obj Y) Z) :
    @[simp]
    theorem CategoryTheory.LocalizerMorphism.id_homMap {C₁ : Type u_2} {D₁ : Type u_5} [CategoryTheory.Category.{u_9, u_2} C₁] [CategoryTheory.Category.{u_8, u_5} D₁] {W₁ : CategoryTheory.MorphismProperty C₁} (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] {X Y : C₁} (f : L₁.obj X L₁.obj Y) :
    (CategoryTheory.LocalizerMorphism.id W₁).homMap L₁ L₁ f = f
    @[simp]
    theorem CategoryTheory.LocalizerMorphism.homMap_homMap {C₁ : Type u_2} {C₂ : Type u_3} {C₃ : Type u_4} {D₁ : Type u_5} {D₂ : Type u_6} {D₃ : Type u_7} [CategoryTheory.Category.{u_9, u_2} C₁] [CategoryTheory.Category.{u_12, u_3} C₂] [CategoryTheory.Category.{u_11, u_4} C₃] [CategoryTheory.Category.{u_8, u_5} D₁] [CategoryTheory.Category.{u_13, u_6} D₂] [CategoryTheory.Category.{u_10, u_7} D₃] {W₁ : CategoryTheory.MorphismProperty C₁} {W₂ : CategoryTheory.MorphismProperty C₂} {W₃ : CategoryTheory.MorphismProperty C₃} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (Ψ : CategoryTheory.LocalizerMorphism W₂ W₃) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] (L₃ : CategoryTheory.Functor C₃ D₃) [L₃.IsLocalization W₃] {X Y : C₁} (f : L₁.obj X L₁.obj Y) :
    Ψ.homMap L₂ L₃ (Φ.homMap L₁ L₂ f) = (Φ.comp Ψ).homMap L₁ L₃ f
    noncomputable def CategoryTheory.Localization.homEquiv {C : Type u_1} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_8, u_1} C] [CategoryTheory.Category.{u_9, u_5} D₁] [CategoryTheory.Category.{u_10, u_6} D₂] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] (L₂ : CategoryTheory.Functor C D₂) [L₂.IsLocalization W] {X Y : C} :
    (L₁.obj X L₁.obj Y) (L₂.obj X L₂.obj Y)

    Bijection between types of morphisms in two localized categories for the same class of morphisms W.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.Localization.homEquiv_apply {C : Type u_1} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_8, u_1} C] [CategoryTheory.Category.{u_9, u_5} D₁] [CategoryTheory.Category.{u_10, u_6} D₂] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] (L₂ : CategoryTheory.Functor C D₂) [L₂.IsLocalization W] {X Y : C} (f : L₁.obj X L₁.obj Y) :
      @[simp]
      theorem CategoryTheory.Localization.homEquiv_symm_apply {C : Type u_1} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_9, u_1} C] [CategoryTheory.Category.{u_10, u_5} D₁] [CategoryTheory.Category.{u_8, u_6} D₂] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] (L₂ : CategoryTheory.Functor C D₂) [L₂.IsLocalization W] {X Y : C} (g : L₂.obj X L₂.obj Y) :
      theorem CategoryTheory.Localization.homEquiv_eq {C : Type u_1} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_10, u_1} C] [CategoryTheory.Category.{u_8, u_5} D₁] [CategoryTheory.Category.{u_9, u_6} D₂] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] (L₂ : CategoryTheory.Functor C D₂) [L₂.IsLocalization W] {X Y : C} (G : CategoryTheory.Functor D₁ D₂) (e : L₁.comp G L₂) (f : L₁.obj X L₁.obj Y) :
      @[simp]
      theorem CategoryTheory.Localization.homEquiv_refl {C : Type u_1} {D₁ : Type u_5} [CategoryTheory.Category.{u_9, u_1} C] [CategoryTheory.Category.{u_8, u_5} D₁] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] {X Y : C} (f : L₁.obj X L₁.obj Y) :
      theorem CategoryTheory.Localization.homEquiv_trans {C : Type u_1} {D₁ : Type u_5} {D₂ : Type u_6} {D₃ : Type u_7} [CategoryTheory.Category.{u_9, u_1} C] [CategoryTheory.Category.{u_8, u_5} D₁] [CategoryTheory.Category.{u_11, u_6} D₂] [CategoryTheory.Category.{u_10, u_7} D₃] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] (L₂ : CategoryTheory.Functor C D₂) [L₂.IsLocalization W] (L₃ : CategoryTheory.Functor C D₃) [L₃.IsLocalization W] {X Y : C} (f : L₁.obj X L₁.obj Y) :
      theorem CategoryTheory.Localization.homEquiv_comp {C : Type u_1} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_9, u_1} C] [CategoryTheory.Category.{u_8, u_5} D₁] [CategoryTheory.Category.{u_10, u_6} D₂] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] (L₂ : CategoryTheory.Functor C D₂) [L₂.IsLocalization W] {X Y Z : C} (f : L₁.obj X L₁.obj Y) (g : L₁.obj Y L₁.obj Z) :
      @[simp]
      theorem CategoryTheory.Localization.homEquiv_map {C : Type u_1} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_8, u_1} C] [CategoryTheory.Category.{u_10, u_5} D₁] [CategoryTheory.Category.{u_9, u_6} D₂] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] (L₂ : CategoryTheory.Functor C D₂) [L₂.IsLocalization W] {X Y : C} (f : X Y) :
      (CategoryTheory.Localization.homEquiv W L₁ L₂) (L₁.map f) = L₂.map f
      theorem CategoryTheory.Localization.homEquiv_isoOfHom_inv {C : Type u_1} {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_8, u_1} C] [CategoryTheory.Category.{u_10, u_5} D₁] [CategoryTheory.Category.{u_9, u_6} D₂] (W : CategoryTheory.MorphismProperty C) (L₁ : CategoryTheory.Functor C D₁) [L₁.IsLocalization W] (L₂ : CategoryTheory.Functor C D₂) [L₂.IsLocalization W] {X Y : C} (f : Y X) (hf : W f) :