Documentation

Mathlib.CategoryTheory.Monad.Monadicity

Monadicity theorems #

We prove monadicity theorems which can establish a given functor is monadic. In particular, we show three versions of Beck's monadicity theorem, and the reflexive (crude) monadicity theorem:

G is a monadic right adjoint if it has a right adjoint, and:

Tags #

Beck, monadicity, descent

TODO #

Dualise to show comonadicity theorems.

instance CategoryTheory.Monad.MonadicityInternal.main_pair_reflexive {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} (adj : F G) (A : adj.toMonad.Algebra) :
CategoryTheory.IsReflexivePair (F.map A.a) (adj.counit.app (F.obj A.A))

The "main pair" for an algebra (A, α) is the pair of morphisms (F α, ε_FA). It is always a reflexive pair, and will be used to construct the left adjoint to the comparison functor and show it is an equivalence.

Equations
  • =
instance CategoryTheory.Monad.MonadicityInternal.main_pair_G_split {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} (adj : F G) (A : adj.toMonad.Algebra) :
G.IsSplitPair (F.map A.a) (adj.counit.app (F.obj A.A))

The "main pair" for an algebra (A, α) is the pair of morphisms (F α, ε_FA). It is always a G-split pair, and will be used to construct the left adjoint to the comparison functor and show it is an equivalence.

Equations
  • =

The object function for the left adjoint to the comparison functor.

Equations
Instances For

    We have a bijection of homsets which will be used to construct the left adjoint to the comparison functor.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.Monad.MonadicityInternal.leftAdjointComparison {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} (adj : F G) [∀ (A : adj.toMonad.Algebra), CategoryTheory.Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
      CategoryTheory.Functor adj.toMonad.Algebra D

      Construct the adjunction to the comparison functor.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} (adj : F G) [∀ (A : adj.toMonad.Algebra), CategoryTheory.Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
        (CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction adj).counit = { app := fun (Y : D) => (CategoryTheory.Limits.Cofork.IsColimit.homIso (CategoryTheory.Limits.colimit.isColimit (CategoryTheory.Limits.parallelPair (F.map (G.map (adj.counit.app Y))) (adj.counit.app (F.obj (G.obj Y))))) Y).symm adj.counit.app Y, , naturality := }

        Provided we have the appropriate coequalizers, we have an adjunction to the comparison functor.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} {adj : F G} [∀ (A : adj.toMonad.Algebra), CategoryTheory.Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] (A : adj.toMonad.Algebra) :
          ((CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction adj).unit.app A).f = (adj.homEquiv A.A (CategoryTheory.Limits.coequalizer (F.map A.a) (adj.counit.app (F.obj A.A)))) (CategoryTheory.Limits.coequalizer.π (F.map A.a) (adj.counit.app (F.obj A.A)))
          @[simp]
          theorem CategoryTheory.Monad.MonadicityInternal.unitCofork_pt {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} {adj : F G} (A : adj.toMonad.Algebra) [CategoryTheory.Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
          (CategoryTheory.Monad.MonadicityInternal.unitCofork A).pt = G.obj (CategoryTheory.Limits.coequalizer (F.map A.a) (adj.counit.app (F.obj A.A)))
          def CategoryTheory.Monad.MonadicityInternal.unitCofork {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} {adj : F G} (A : adj.toMonad.Algebra) [CategoryTheory.Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
          CategoryTheory.Limits.Cofork (G.map (F.map A.a)) (G.map (adj.counit.app (F.obj A.A)))

          This is a cofork which is helpful for establishing monadicity: the morphism from the Beck coequalizer to this cofork is the unit for the adjunction on the comparison functor.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Monad.MonadicityInternal.unitCofork_π {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} {adj : F G} (A : adj.toMonad.Algebra) [CategoryTheory.Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
            (CategoryTheory.Monad.MonadicityInternal.unitCofork A) = G.map (CategoryTheory.Limits.coequalizer.π (F.map A.a) (adj.counit.app (F.obj A.A)))
            def CategoryTheory.Monad.MonadicityInternal.counitCofork {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} (adj : F G) (B : D) :
            CategoryTheory.Limits.Cofork (F.map (G.map (adj.counit.app B))) (adj.counit.app (F.obj (G.obj B)))

            The cofork which describes the counit of the adjunction: the morphism from the coequalizer of this pair to this morphism is the counit.

            Equations
            Instances For

              The counit cofork is a colimit provided G reflects it.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                instance CategoryTheory.Monad.MonadicityInternal.instHasColimitWalkingParallelPairParallelPairMapAppCounitObjOfHasCoequalizerAA {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₁, u₂} D] {G : CategoryTheory.Functor D C} {F : CategoryTheory.Functor C D} (adj : F G) [∀ (A : adj.toMonad.Algebra), CategoryTheory.Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] (B : D) :
                CategoryTheory.Limits.HasColimit (CategoryTheory.Limits.parallelPair (F.map (G.map (adj.counit.app B))) (adj.counit.app (F.obj (G.obj B))))
                Equations
                • =

                If G is monadic, it creates colimits of G-split pairs. This is the "boring" direction of Beck's monadicity theorem, the converse is given in monadicOfCreatesGSplitCoequalizers.

                Equations
                Instances For
                  Instances
                    Instances
                      Instances

                        Beck's monadicity theorem. If G has a right adjoint and creates coequalizers of G-split pairs, then it is monadic. This is the converse of createsGSplitOfMonadic.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          An alternate version of Beck's monadicity theorem. If G reflects isomorphisms, preserves coequalizers of G-split pairs and C has coequalizers of G-split pairs, then it is monadic.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            Reflexive (crude) monadicity theorem. If G has a right adjoint, D has and G preserves reflexive coequalizers and G reflects isomorphisms, then G is monadic.

                            Equations
                            Instances For