Documentation

Mathlib.CategoryTheory.Monad.Monadicity

Monadicity theorems #

We prove monadicity theorems which can establish a given functor is monadic. In particular, we show three versions of Beck's monadicity theorem, and the reflexive (crude) monadicity theorem:

G is a monadic right adjoint if it has a left adjoint, and:

This file has been adapted to Mathlib.CategoryTheory.Monad.Comonadicity. Please try to keep them in sync.

Tags #

Beck, monadicity, descent

instance CategoryTheory.Monad.MonadicityInternal.main_pair_reflexive {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) (A : adj.toMonad.Algebra) :
IsReflexivePair (F.map A.a) (adj.counit.app (F.obj A.A))

The "main pair" for an algebra (A, α) is the pair of morphisms (F α, ε_FA). It is always a reflexive pair, and will be used to construct the left adjoint to the comparison functor and show it is an equivalence.

instance CategoryTheory.Monad.MonadicityInternal.main_pair_G_split {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) (A : adj.toMonad.Algebra) :
G.IsSplitPair (F.map A.a) (adj.counit.app (F.obj A.A))

The "main pair" for an algebra (A, α) is the pair of morphisms (F α, ε_FA). It is always a G-split pair, and will be used to construct the left adjoint to the comparison functor and show it is an equivalence.

The object function for the left adjoint to the comparison functor.

Equations
Instances For

    We have a bijection of homsets which will be used to construct the left adjoint to the comparison functor.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Construct the adjunction to the comparison functor.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Provided we have the appropriate coequalizers, we have an adjunction to the comparison functor.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) [∀ (A : adj.toMonad.Algebra), Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
          (comparisonAdjunction adj).counit = { app := fun (Y : D) => (Limits.Cofork.IsColimit.homIso (Limits.colimit.isColimit (Limits.parallelPair (F.map (G.map (adj.counit.app Y))) (adj.counit.app (F.obj (G.obj Y))))) Y).symm (adj.homEquiv (G.obj Y) Y).symm (CategoryStruct.id (G.obj Y)), , naturality := }
          def CategoryTheory.Monad.MonadicityInternal.unitCofork {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} {adj : F G} (A : adj.toMonad.Algebra) [Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
          Limits.Cofork (G.map (F.map A.a)) (G.map (adj.counit.app (F.obj A.A)))

          This is a cofork which is helpful for establishing monadicity: the morphism from the Beck coequalizer to this cofork is the unit for the adjunction on the comparison functor.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Monad.MonadicityInternal.unitCofork_pt {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} {adj : F G} (A : adj.toMonad.Algebra) [Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
            (unitCofork A).pt = G.obj (Limits.coequalizer (F.map A.a) (adj.counit.app (F.obj A.A)))
            @[simp]
            theorem CategoryTheory.Monad.MonadicityInternal.unitCofork_π {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} {adj : F G} (A : adj.toMonad.Algebra) [Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
            (unitCofork A).π = G.map (Limits.coequalizer.π (F.map A.a) (adj.counit.app (F.obj A.A)))
            def CategoryTheory.Monad.MonadicityInternal.counitCofork {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) (B : D) :
            Limits.Cofork (F.map (G.map (adj.counit.app B))) (adj.counit.app (F.obj (G.obj B)))

            The cofork which describes the counit of the adjunction: the morphism from the coequalizer of this pair to this morphism is the counit.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Monad.MonadicityInternal.counitCofork_pt {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) (B : D) :
              (counitCofork adj B).pt = B

              The counit cofork is a colimit provided G reflects it.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                If G is monadic, it creates colimits of G-split pairs. This is the "boring" direction of Beck's monadicity theorem, the converse is given in monadicOfCreatesGSplitCoequalizers.

                Equations
                Instances For
                  Instances

                    To show G is a monadic right adjoint, we can show it preserves and reflects G-split coequalizers, and D has them.

                    Equations
                    Instances For
                      class CategoryTheory.Monad.CreatesColimitOfIsSplitPair {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] (G : Functor D C) :
                      Type (max (max u₁ u₂) v₁)
                      Instances
                        Equations
                        • One or more equations did not get rendered due to their size.

                        Beck's monadicity theorem: if G has a left adjoint and creates coequalizers of G-split pairs, then it is monadic. This is the converse of createsGSplitCoequalizersOfMonadic.

                        Equations
                        Instances For

                          An alternate version of Beck's monadicity theorem: if G reflects isomorphisms, preserves coequalizers of G-split pairs and C has coequalizers of G-split pairs, then it is monadic.

                          Equations
                          Instances For

                            Reflexive (crude) monadicity theorem. If G has a right adjoint, D has and G preserves reflexive coequalizers and G reflects isomorphisms, then G is monadic.

                            Equations
                            Instances For