Transport a symmetric monoidal structure along an equivalence of categories #
instance
CategoryTheory.Monoidal.Transported.instBraidedCategory
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(e : C ≌ D)
[MonoidalCategory C]
[BraidedCategory C]
:
instance
CategoryTheory.Monoidal.instBraidedTransportedInverseEquivalenceTransported
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(e : C ≌ D)
[MonoidalCategory C]
[BraidedCategory C]
:
Equations
def
CategoryTheory.Monoidal.transportedFunctorCompInverseLaxBraided
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(e : C ≌ D)
[MonoidalCategory C]
[BraidedCategory C]
:
This is a def because once we have that both (e' e).inverse
and (e' e).functor
are
braided, this causes a diamond.
Equations
Instances For
def
CategoryTheory.Monoidal.transportedFunctorCompInverseBraided
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(e : C ≌ D)
[MonoidalCategory C]
[BraidedCategory C]
:
This is a def because once we have that both (e' e).inverse
and (e' e).functor
are
braided, this causes a diamond.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.Monoidal.instBraidedTransportedFunctorEquivalenceTransported
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(e : C ≌ D)
[MonoidalCategory C]
[BraidedCategory C]
:
Equations
instance
CategoryTheory.Monoidal.Transported.instSymmetricCategory
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(e : C ≌ D)
[MonoidalCategory C]
[SymmetricCategory C]
: