Additional results about monoid objects in cartesian monoidal categories #
theorem
Mon_.lift_lift_assoc
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A : C}
{B : Mon_ C}
(f g h : A ⟶ B.X)
:
CategoryTheory.CategoryStruct.comp
(CategoryTheory.ChosenFiniteProducts.lift
(CategoryTheory.CategoryStruct.comp (CategoryTheory.ChosenFiniteProducts.lift f g) B.mul) h)
B.mul = CategoryTheory.CategoryStruct.comp
(CategoryTheory.ChosenFiniteProducts.lift f
(CategoryTheory.CategoryStruct.comp (CategoryTheory.ChosenFiniteProducts.lift g h) B.mul))
B.mul
@[simp]
theorem
Mon_.lift_comp_one_left
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A : C}
{B : Mon_ C}
(f : A ⟶ 𝟙_ C)
(g : A ⟶ B.X)
:
@[simp]
theorem
Mon_.lift_comp_one_left_assoc
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A : C}
{B : Mon_ C}
(f : A ⟶ 𝟙_ C)
(g : A ⟶ B.X)
{Z : C}
(h : B.X ⟶ Z)
:
@[simp]
theorem
Mon_.lift_comp_one_right
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A : C}
{B : Mon_ C}
(f : A ⟶ B.X)
(g : A ⟶ 𝟙_ C)
:
@[simp]
theorem
Mon_.lift_comp_one_right_assoc
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A : C}
{B : Mon_ C}
(f : A ⟶ B.X)
(g : A ⟶ 𝟙_ C)
{Z : C}
(h : B.X ⟶ Z)
: