Documentation

Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed

Internal homs for day convolution #

Given a category V that is monoidal closed, a category C that is monoidal, a functor C ⥤ V, and given the data of suitable day convolutions and suitable ends of profunctors c c₁ c₂ ↦ ihom (F c₁) (·.obj (c₂ ⊗ c)), we prove that the data of the units of the left Kan extensions that define day convolutions and the data of the canonical morphisms to the aforementioned ends can be organised as data that exhibit F as monoidal closed in C ⥤ V for the Day convolution monoidal structure.

TODOs #

Given F : C ⥤ V, this is the functor G ↦ c c₁ c₂ ↦ ihom (F c₁) (G.obj (c₂ ⊗ c)). The internal hom functor for Day convolution [F, -] is naturally isomorphic to the functor G ↦ c ↦ end_ (c₁ c₂ ↦ ihom (F c₁) (G.obj (c₂ ⊗ c))), hence this definition.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    structure CategoryTheory.MonoidalCategory.DayConvolutionInternalHom {C : Type u₁} [Category.{v₁, u₁} C] {V : Type u₂} [Category.{v₂, u₂} V] [MonoidalCategory C] [MonoidalCategory V] [MonoidalClosed V] (F G H : Functor C V) :
    Type (max (max (max u₁ u₂) v₁) v₂)

    DayConvolutionInternalHom F G H asserts that H is the value at G of an internal hom functor of F for the Day convolution monoidal structure. This is phrased as the data of a limit CategoryTheory.Wedge (i.e an end) on internalHomDiagramFunctor F|>.obj G|>.obj c and c, with tip (H.obj G).obj c and a compatibility condition asserting that the functoriality of H identifies to the functoriality of ends.

    Instances For
      @[simp]
      theorem CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_comp_π_assoc {C : Type u₁} [Category.{v₁, u₁} C] {V : Type u₂} [Category.{v₂, u₂} V] [MonoidalCategory C] [MonoidalCategory V] [MonoidalClosed V] {F G H : Functor C V} (self : DayConvolutionInternalHom F G H) {c c' : C} (f : c c') (j : C) {Z : V} (h : (ihom (F.obj j)).obj (G.obj (tensorObj j c')) Z) :
      theorem CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.hπ_assoc {C : Type u₁} [Category.{v₁, u₁} C] {V : Type u₂} [Category.{v₂, u₂} V] [MonoidalCategory C] [MonoidalCategory V] [MonoidalClosed V] {F G H : Functor C V} (self : DayConvolutionInternalHom F G H) (c : C) i j : C (f : i j) {Z : V} (h : (ihom (F.obj i)).obj (G.obj (tensorObj j c)) Z) :

      If we have a map G ⟶ G' and a DayConvolutionInternalHom F G' H', then there is a unique map H ⟶ H' induced by functoriality of ends and functoriality of internalHomDiagramFunctor F.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_app_comp_π {C : Type u₁} [Category.{v₁, u₁} C] {V : Type u₂} [Category.{v₂, u₂} V] [MonoidalCategory C] [MonoidalCategory V] [MonoidalClosed V] {F G H : Functor C V} ( : DayConvolutionInternalHom F G H) {G' H' : Functor C V} (f : G G') (ℌ' : DayConvolutionInternalHom F G' H') (c j : C) :
        CategoryStruct.comp ((.map f ℌ').app c) (ℌ'.π c j) = CategoryStruct.comp (.π c j) ((ihom (F.obj j)).map (f.app (tensorObj j c)))
        @[simp]
        theorem CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_app_comp_π_assoc {C : Type u₁} [Category.{v₁, u₁} C] {V : Type u₂} [Category.{v₂, u₂} V] [MonoidalCategory C] [MonoidalCategory V] [MonoidalClosed V] {F G H : Functor C V} ( : DayConvolutionInternalHom F G H) {G' H' : Functor C V} (f : G G') (ℌ' : DayConvolutionInternalHom F G' H') (c j : C) {Z : V} (h : (ihom (F.obj j)).obj (G'.obj (tensorObj j c)) Z) :
        CategoryStruct.comp ((.map f ℌ').app c) (CategoryStruct.comp (ℌ'.π c j) h) = CategoryStruct.comp (.π c j) (CategoryStruct.comp ((ihom (F.obj j)).map (f.app (tensorObj j c))) h)

        Given ℌ : DayConvolutionInternalHom F H, if we think of H.obj G as the internal hom [F, G], then this is the transformation corresponding to the component at G of the "evaluation" natural morphism F ⊛ [F, _] ⟶ 𝟭.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Given ℌ : DayConvolutionInternalHom F H, if we think of H.obj G as the internal hom [F, G], then this is the transformation corresponding to the component at G of the "coevaluation" natural morphism 𝟭 ⟶ [F, F ⊛ _].

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For