Monoid objects internal to monoidal opposites #
In this file, we record the equivalence between Mon C and Mon Cᴹᵒᵖ.
instance
MonObj.mopMonObj
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[CategoryTheory.MonObj M]
:
CategoryTheory.MonObj { unmop := M }
If M : C is a monoid object, then mop M : Cᴹᵒᵖ too.
Equations
- MonObj.mopMonObj M = { one := CategoryTheory.MonObj.one.mop, mul := CategoryTheory.MonObj.mul.mop, one_mul := ⋯, mul_one := ⋯, mul_assoc := ⋯ }
@[simp]
theorem
MonObj.mopMonObj_mul_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[CategoryTheory.MonObj M]
:
@[simp]
theorem
MonObj.mopMonObj_one_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[CategoryTheory.MonObj M]
:
instance
MonObj.mop_isMonHom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{M : C}
[CategoryTheory.MonObj M]
{N : C}
[CategoryTheory.MonObj N]
(f : M ⟶ N)
[CategoryTheory.IsMonHom f]
:
If f is a morphism of monoid objects internal to C,
then f.mop is a morphism of monoid objects internal to Cᴹᵒᵖ.
instance
MonObj.unmopMonObj
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[CategoryTheory.MonObj M]
:
If M : Cᴹᵒᵖ is a monoid object, then unmop M : C too.
Equations
- MonObj.unmopMonObj M = { one := CategoryTheory.MonObj.one.unmop, mul := CategoryTheory.MonObj.mul.unmop, one_mul := ⋯, mul_one := ⋯, mul_assoc := ⋯ }
theorem
MonObj.unmopMonObj_one
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[CategoryTheory.MonObj M]
:
theorem
MonObj.unmopMonObj_mul
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[CategoryTheory.MonObj M]
:
instance
MonObj.unmop_isMonHom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{M : Cᴹᵒᵖ}
[CategoryTheory.MonObj M]
{N : Cᴹᵒᵖ}
[CategoryTheory.MonObj N]
(f : M ⟶ N)
[CategoryTheory.IsMonHom f]
:
If f is a morphism of monoid objects internal to Cᴹᵒᵖ,
so is f.unmop.
def
MonObj.mopEquiv
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
:
The equivalence of categories between monoids internal to C
and monoids internal to the monoidal opposite of C.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MonObj.mopEquiv_functor_obj_X_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : CategoryTheory.Mon C)
:
@[simp]
theorem
MonObj.mopEquiv_counitIso_inv_app_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : CategoryTheory.Mon Cᴹᵒᵖ)
:
@[simp]
@[simp]
theorem
MonObj.mopEquiv_inverse_obj_X
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : CategoryTheory.Mon Cᴹᵒᵖ)
:
@[simp]
@[simp]
theorem
MonObj.mopEquiv_inverse_map_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{X✝ Y✝ : CategoryTheory.Mon Cᴹᵒᵖ}
(f : X✝ ⟶ Y✝)
:
@[simp]
@[simp]
@[simp]
theorem
MonObj.mopEquiv_unitIso_inv_app_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : CategoryTheory.Mon C)
:
@[simp]
theorem
MonObj.mopEquiv_functor_map_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{X✝ Y✝ : CategoryTheory.Mon C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
MonObj.mopEquiv_unitIso_hom_app_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : CategoryTheory.Mon C)
:
@[simp]
theorem
MonObj.mopEquiv_counitIso_hom_app_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : CategoryTheory.Mon Cᴹᵒᵖ)
:
def
MonObj.mopEquivCompForgetIso
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
:
The equivalence of categories between monoids internal to C
and monoids internal to the monoidal opposite of C lies over
the equivalence C ≌ Cᴹᵒᵖ via the forgetful functors.
Equations
Instances For
@[simp]
theorem
MonObj.mopEquivCompForgetIso_hom_app_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : CategoryTheory.Mon C)
:
@[simp]
theorem
MonObj.mopEquivCompForgetIso_inv_app_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : CategoryTheory.Mon C)
: