Documentation

Mathlib.CategoryTheory.Monoidal.Types.Basic

The category of types is a monoidal category #

@[simp]
theorem CategoryTheory.tensor_apply {W : Type u} {X : Type u} {Y : Type u} {Z : Type u} (f : W X) (g : Y Z) (p : CategoryTheory.MonoidalCategory.tensorObj W Y) :
@[simp]
theorem CategoryTheory.associator_hom_apply {X : Type u} {Y : Type u} {Z : Type u} {x : X} {y : Y} {z : Z} :
(CategoryTheory.MonoidalCategory.associator X Y Z).hom ((x, y), z) = (x, y, z)
@[simp]
theorem CategoryTheory.associator_inv_apply {X : Type u} {Y : Type u} {Z : Type u} {x : X} {y : Y} {z : Z} :
(CategoryTheory.MonoidalCategory.associator X Y Z).inv (x, y, z) = ((x, y), z)

If F is a monoidal functor out of Type, it takes the (n+1)st cartesian power of a type to the image of that type, tensored with the image of the nth cartesian power.

Equations
Instances For