Documentation

Mathlib.CategoryTheory.Monoidal.Functor

(Lax) monoidal functors #

A lax monoidal functor F between monoidal categories C and D is a functor between the underlying categories equipped with morphisms

A monoidal functor is a lax monoidal functor for which ε and μ are isomorphisms.

We show that the composition of (lax) monoidal functors gives a (lax) monoidal functor.

See also CategoryTheory.Monoidal.Functorial for a typeclass decorating an object-level function with the additional data of a monoidal functor. This is useful when stating that a pre-existing functor is monoidal.

See CategoryTheory.Monoidal.NaturalTransformation for monoidal natural transformations.

We show in CategoryTheory.Monoidal.Mon_ that lax monoidal functors take monoid objects to monoid objects.

Future work #

References #

See .

A lax monoidal functor is a functor F : C ⥤ D between monoidal categories, equipped with morphisms ε : 𝟙 _D ⟶ F.obj (𝟙_ C) and μ X Y : F.obj X ⊗ F.obj Y ⟶ F.obj (X ⊗ Y), satisfying the appropriate coherences.

Instances For
    @[simp]
    theorem CategoryTheory.LaxMonoidalFunctor.ofTensorHom_toFunctor_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) (ε : 𝟙_ D F.obj (𝟙_ C)) (μ : (X Y : C) → CategoryTheory.MonoidalCategory.tensorObj (F.obj X) (F.obj Y) F.obj (CategoryTheory.MonoidalCategory.tensorObj X Y)) (μ_natural : autoParam (∀ {X Y X' Y' : C} (f : X Y) (g : X' Y'), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (F.map f) (F.map g)) (μ Y Y') = CategoryTheory.CategoryStruct.comp (μ X X') (F.map (CategoryTheory.MonoidalCategory.tensorHom f g))) _auto✝) (associativity : autoParam (∀ (X Y Z : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (μ X Y) (CategoryTheory.CategoryStruct.id (F.obj Z))) (CategoryTheory.CategoryStruct.comp (μ (CategoryTheory.MonoidalCategory.tensorObj X Y) Z) (F.map (CategoryTheory.MonoidalCategory.associator X Y Z).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator (F.obj X) (F.obj Y) (F.obj Z)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) (μ Y Z)) (μ X (CategoryTheory.MonoidalCategory.tensorObj Y Z)))) _auto✝) (left_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.leftUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom ε (CategoryTheory.CategoryStruct.id (F.obj X))) (CategoryTheory.CategoryStruct.comp (μ (𝟙_ C) X) (F.map (CategoryTheory.MonoidalCategory.leftUnitor X).hom))) _auto✝) (right_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.rightUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) ε) (CategoryTheory.CategoryStruct.comp (μ X (𝟙_ C)) (F.map (CategoryTheory.MonoidalCategory.rightUnitor X).hom))) _auto✝) :
    ∀ {X Y : C} (a : X Y), (CategoryTheory.LaxMonoidalFunctor.ofTensorHom F ε μ μ_natural associativity left_unitality right_unitality).map a = F.map a
    @[simp]
    theorem CategoryTheory.LaxMonoidalFunctor.ofTensorHom_ε {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) (ε : 𝟙_ D F.obj (𝟙_ C)) (μ : (X Y : C) → CategoryTheory.MonoidalCategory.tensorObj (F.obj X) (F.obj Y) F.obj (CategoryTheory.MonoidalCategory.tensorObj X Y)) (μ_natural : autoParam (∀ {X Y X' Y' : C} (f : X Y) (g : X' Y'), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (F.map f) (F.map g)) (μ Y Y') = CategoryTheory.CategoryStruct.comp (μ X X') (F.map (CategoryTheory.MonoidalCategory.tensorHom f g))) _auto✝) (associativity : autoParam (∀ (X Y Z : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (μ X Y) (CategoryTheory.CategoryStruct.id (F.obj Z))) (CategoryTheory.CategoryStruct.comp (μ (CategoryTheory.MonoidalCategory.tensorObj X Y) Z) (F.map (CategoryTheory.MonoidalCategory.associator X Y Z).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator (F.obj X) (F.obj Y) (F.obj Z)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) (μ Y Z)) (μ X (CategoryTheory.MonoidalCategory.tensorObj Y Z)))) _auto✝) (left_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.leftUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom ε (CategoryTheory.CategoryStruct.id (F.obj X))) (CategoryTheory.CategoryStruct.comp (μ (𝟙_ C) X) (F.map (CategoryTheory.MonoidalCategory.leftUnitor X).hom))) _auto✝) (right_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.rightUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) ε) (CategoryTheory.CategoryStruct.comp (μ X (𝟙_ C)) (F.map (CategoryTheory.MonoidalCategory.rightUnitor X).hom))) _auto✝) :
    (CategoryTheory.LaxMonoidalFunctor.ofTensorHom F ε μ μ_natural associativity left_unitality right_unitality) = ε
    @[simp]
    theorem CategoryTheory.LaxMonoidalFunctor.ofTensorHom_toFunctor_obj {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) (ε : 𝟙_ D F.obj (𝟙_ C)) (μ : (X Y : C) → CategoryTheory.MonoidalCategory.tensorObj (F.obj X) (F.obj Y) F.obj (CategoryTheory.MonoidalCategory.tensorObj X Y)) (μ_natural : autoParam (∀ {X Y X' Y' : C} (f : X Y) (g : X' Y'), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (F.map f) (F.map g)) (μ Y Y') = CategoryTheory.CategoryStruct.comp (μ X X') (F.map (CategoryTheory.MonoidalCategory.tensorHom f g))) _auto✝) (associativity : autoParam (∀ (X Y Z : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (μ X Y) (CategoryTheory.CategoryStruct.id (F.obj Z))) (CategoryTheory.CategoryStruct.comp (μ (CategoryTheory.MonoidalCategory.tensorObj X Y) Z) (F.map (CategoryTheory.MonoidalCategory.associator X Y Z).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator (F.obj X) (F.obj Y) (F.obj Z)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) (μ Y Z)) (μ X (CategoryTheory.MonoidalCategory.tensorObj Y Z)))) _auto✝) (left_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.leftUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom ε (CategoryTheory.CategoryStruct.id (F.obj X))) (CategoryTheory.CategoryStruct.comp (μ (𝟙_ C) X) (F.map (CategoryTheory.MonoidalCategory.leftUnitor X).hom))) _auto✝) (right_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.rightUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) ε) (CategoryTheory.CategoryStruct.comp (μ X (𝟙_ C)) (F.map (CategoryTheory.MonoidalCategory.rightUnitor X).hom))) _auto✝) :
    ∀ (a : C), (CategoryTheory.LaxMonoidalFunctor.ofTensorHom F ε μ μ_natural associativity left_unitality right_unitality).obj a = F.obj a
    @[simp]
    theorem CategoryTheory.LaxMonoidalFunctor.ofTensorHom_μ {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) (ε : 𝟙_ D F.obj (𝟙_ C)) (μ : (X Y : C) → CategoryTheory.MonoidalCategory.tensorObj (F.obj X) (F.obj Y) F.obj (CategoryTheory.MonoidalCategory.tensorObj X Y)) (μ_natural : autoParam (∀ {X Y X' Y' : C} (f : X Y) (g : X' Y'), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (F.map f) (F.map g)) (μ Y Y') = CategoryTheory.CategoryStruct.comp (μ X X') (F.map (CategoryTheory.MonoidalCategory.tensorHom f g))) _auto✝) (associativity : autoParam (∀ (X Y Z : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (μ X Y) (CategoryTheory.CategoryStruct.id (F.obj Z))) (CategoryTheory.CategoryStruct.comp (μ (CategoryTheory.MonoidalCategory.tensorObj X Y) Z) (F.map (CategoryTheory.MonoidalCategory.associator X Y Z).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator (F.obj X) (F.obj Y) (F.obj Z)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) (μ Y Z)) (μ X (CategoryTheory.MonoidalCategory.tensorObj Y Z)))) _auto✝) (left_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.leftUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom ε (CategoryTheory.CategoryStruct.id (F.obj X))) (CategoryTheory.CategoryStruct.comp (μ (𝟙_ C) X) (F.map (CategoryTheory.MonoidalCategory.leftUnitor X).hom))) _auto✝) (right_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.rightUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) ε) (CategoryTheory.CategoryStruct.comp (μ X (𝟙_ C)) (F.map (CategoryTheory.MonoidalCategory.rightUnitor X).hom))) _auto✝) (X : C) (Y : C) :
    (CategoryTheory.LaxMonoidalFunctor.ofTensorHom F ε μ μ_natural associativity left_unitality right_unitality) X Y = μ X Y
    def CategoryTheory.LaxMonoidalFunctor.ofTensorHom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) (ε : 𝟙_ D F.obj (𝟙_ C)) (μ : (X Y : C) → CategoryTheory.MonoidalCategory.tensorObj (F.obj X) (F.obj Y) F.obj (CategoryTheory.MonoidalCategory.tensorObj X Y)) (μ_natural : autoParam (∀ {X Y X' Y' : C} (f : X Y) (g : X' Y'), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (F.map f) (F.map g)) (μ Y Y') = CategoryTheory.CategoryStruct.comp (μ X X') (F.map (CategoryTheory.MonoidalCategory.tensorHom f g))) _auto✝) (associativity : autoParam (∀ (X Y Z : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (μ X Y) (CategoryTheory.CategoryStruct.id (F.obj Z))) (CategoryTheory.CategoryStruct.comp (μ (CategoryTheory.MonoidalCategory.tensorObj X Y) Z) (F.map (CategoryTheory.MonoidalCategory.associator X Y Z).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator (F.obj X) (F.obj Y) (F.obj Z)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) (μ Y Z)) (μ X (CategoryTheory.MonoidalCategory.tensorObj Y Z)))) _auto✝) (left_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.leftUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom ε (CategoryTheory.CategoryStruct.id (F.obj X))) (CategoryTheory.CategoryStruct.comp (μ (𝟙_ C) X) (F.map (CategoryTheory.MonoidalCategory.leftUnitor X).hom))) _auto✝) (right_unitality : autoParam (∀ (X : C), (CategoryTheory.MonoidalCategory.rightUnitor (F.obj X)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id (F.obj X)) ε) (CategoryTheory.CategoryStruct.comp (μ X (𝟙_ C)) (F.map (CategoryTheory.MonoidalCategory.rightUnitor X).hom))) _auto✝) :

    A constructor for lax monoidal functors whose axioms are described by tensorHom instead of whiskerLeft and whiskerRight.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A monoidal functor is a lax monoidal functor for which the tensorator and unitor as isomorphisms.

      See .

      Instances For

        The unit morphism of a (strong) monoidal functor as an isomorphism.

        Equations
        Instances For

          The identity lax monoidal functor.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The identity monoidal functor.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The composition of two lax monoidal functors is again lax monoidal.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The composition of two lax monoidal functors is again lax monoidal.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The diagonal functor as a monoidal functor.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The composition of two monoidal functors is again monoidal.

                    Equations
                    • F ⊗⋙ G = let __src := F.toLaxMonoidalFunctor ⊗⋙ G.toLaxMonoidalFunctor; { toLaxMonoidalFunctor := __src, ε_isIso := , μ_isIso := }
                    Instances For

                      The composition of two monoidal functors is again monoidal.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        If we have a right adjoint functor G to a monoidal functor F, then G has a lax monoidal structure as well.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          If a monoidal functor F is an equivalence of categories then its inverse is also monoidal.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For