Monoidal natural transformations #
Natural transformations between (lax) monoidal functors must satisfy
an additional compatibility relation with the tensorators:
F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y.
A natural transformation between (lax) monoidal functors is monoidal if it satisfies
ε F ≫ τ.app (𝟙_ C) = ε G and μ F X Y ≫ app (X ⊗ Y) = (app X ⊗ₘ app Y) ≫ μ G X Y.
- unit : CategoryStruct.comp (Functor.LaxMonoidal.ε F₁) (τ.app (MonoidalCategoryStruct.tensorUnit C)) = Functor.LaxMonoidal.ε F₂
- tensor (X Y : C) : CategoryStruct.comp (Functor.LaxMonoidal.μ F₁ X Y) (τ.app (MonoidalCategoryStruct.tensorObj X Y)) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (τ.app X) (τ.app Y)) (Functor.LaxMonoidal.μ F₂ X Y)
Instances
The type of monoidal natural transformations between (bundled) lax monoidal functors.
the natural transformation between the underlying functors
- isMonoidal : NatTrans.IsMonoidal self.hom
Instances For
Equations
- One or more equations did not get rendered due to their size.
Constructor for morphisms in the category LaxMonoidalFunctor C D.
Equations
- CategoryTheory.LaxMonoidalFunctor.homMk f = { hom := f, isMonoidal := ⋯ }
Instances For
Constructor for isomorphisms in the category LaxMonoidalFunctor C D.
Equations
- CategoryTheory.LaxMonoidalFunctor.isoMk e = { hom := CategoryTheory.LaxMonoidalFunctor.homMk e.hom, inv := CategoryTheory.LaxMonoidalFunctor.homMk e.inv, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
Constructor for isomorphisms between lax monoidal functors.
Equations
- CategoryTheory.LaxMonoidalFunctor.isoOfComponents e naturality unit tensor = CategoryTheory.LaxMonoidalFunctor.isoMk (CategoryTheory.NatIso.ofComponents e ⋯)
Instances For
Transporting a monoidal structure along a natural isomorphism of functors makes the isomorphism a monoidal natural transformation.