Documentation

Mathlib.CategoryTheory.Monoidal.NaturalTransformation

Monoidal natural transformations #

Natural transformations between (lax) monoidal functors must satisfy an additional compatibility relation with the tensorators: F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y.

A natural transformation between (lax) monoidal functors is monoidal if it satisfies ε F ≫ τ.app (𝟙_ C) = ε G and μ F X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ μ G X Y.

Instances
    @[simp]
    theorem CategoryTheory.NatTrans.IsMonoidal.unit_assoc {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {D : Type u₂} {inst✝² : CategoryTheory.Category.{v₂, u₂} D} {inst✝³ : CategoryTheory.MonoidalCategory D} {F₁ F₂ : CategoryTheory.Functor C D} {τ : F₁ F₂} {inst✝⁴ : F₁.LaxMonoidal} {inst✝⁵ : F₂.LaxMonoidal} [self : CategoryTheory.NatTrans.IsMonoidal τ] {Z : D} (h : F₂.obj (𝟙_ C) Z) :

    The type of monoidal natural transformations between (bundled) lax monoidal functors.

    Instances For

      Constructor for morphisms in the category LaxMonoidalFunctor C D.

      Equations
      Instances For

        Constructor for isomorphisms in the category LaxMonoidalFunctor C D.

        Equations
        Instances For

          Constructor for isomorphisms between lax monoidal functors.

          Equations
          Instances For