Documentation
Mathlib
.
CategoryTheory
.
Monoidal
.
Types
.
Symmetric
Search
Google site search
return to top
source
Imports
Init
Mathlib.CategoryTheory.Monoidal.OfChosenFiniteProducts.Symmetric
Mathlib.CategoryTheory.Monoidal.Types.Basic
Imported by
CategoryTheory
.
typesSymmetric
CategoryTheory
.
braiding_hom_apply
CategoryTheory
.
braiding_inv_apply
The category of types is a symmetric monoidal category
#
source
instance
CategoryTheory
.
typesSymmetric
:
CategoryTheory.SymmetricCategory
(Type
u)
Equations
CategoryTheory.typesSymmetric
=
CategoryTheory.symmetricOfChosenFiniteProducts
CategoryTheory.Limits.Types.terminalLimitCone
CategoryTheory.Limits.Types.binaryProductLimitCone
source
@[simp]
theorem
CategoryTheory
.
braiding_hom_apply
{X :
Type
u}
{Y :
Type
u}
{x :
X
}
{y :
Y
}
:
(
β_
X
Y
)
.hom
(
x
,
y
)
=
(
y
,
x
)
source
@[simp]
theorem
CategoryTheory
.
braiding_inv_apply
{X :
Type
u}
{Y :
Type
u}
{x :
X
}
{y :
Y
}
:
(
β_
X
Y
)
.inv
(
y
,
x
)
=
(
x
,
y
)