Documentation

Mathlib.CategoryTheory.MorphismProperty.OverAdjunction

Adjunction of pushforward and pullback in P.Over Q X #

A morphism f : X ⟶ Y defines two functors:

These are adjoint under suitable assumptions on P and Q.

def CategoryTheory.MorphismProperty.Over.map {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} {f : X Y} [P.IsStableUnderComposition] (hPf : P f) :
CategoryTheory.Functor (P.Over Q X) (P.Over Q Y)

If P is stable under composition and f : X ⟶ Y satisfies P, this is the functor P.Over Q X ⥤ P.Over Q Y given by composing with f.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def CategoryTheory.MorphismProperty.Over.mapComp {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] :

    Over.map commutes with composition.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] (X✝ : P.Over Q X) :
      @[simp]
      theorem CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] (X✝ : P.Over Q X) :
      noncomputable def CategoryTheory.MorphismProperty.Over.pullback {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] (P Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} (f : X Y) [CategoryTheory.Limits.HasPullbacks T] [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] :
      CategoryTheory.Functor (P.Over Q Y) (P.Over Q X)

      If P and Q are stable under base change and pullbacks exist in T, this is the functor P.Over Q Y ⥤ P.Over Q X given by base change along f.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        @[simp]
        theorem CategoryTheory.MorphismProperty.Over.pullback_obj_hom {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] (P Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} (f : X Y) [CategoryTheory.Limits.HasPullbacks T] [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] (A : P.Over Q Y) :
        @[simp]
        theorem CategoryTheory.MorphismProperty.Over.pullback_obj_left {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] (P Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} (f : X Y) [CategoryTheory.Limits.HasPullbacks T] [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] (A : P.Over Q Y) :

        Over.pullback commutes with composition.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P Q : CategoryTheory.MorphismProperty T} [Q.IsMultiplicative] [CategoryTheory.Limits.HasPullbacks T] [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] [Q.RespectsIso] {X Y Z : T} (f : X Y) (g : Y Z) (X✝ : P.Over Q Z) :
          @[simp]
          theorem CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P Q : CategoryTheory.MorphismProperty T} [Q.IsMultiplicative] [CategoryTheory.Limits.HasPullbacks T] [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] [Q.RespectsIso] {X Y Z : T} (f : X Y) (g : Y Z) (X✝ : P.Over Q Z) :
          noncomputable def CategoryTheory.MorphismProperty.Over.pullbackCongr {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P Q : CategoryTheory.MorphismProperty T} [Q.IsMultiplicative] [CategoryTheory.Limits.HasPullbacks T] [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] {X Y : T} {f g : X Y} (h : f = g) :

          If f = g, then base change along f is naturally isomorphic to base change along g.

          Equations
          Instances For
            noncomputable def CategoryTheory.MorphismProperty.Over.mapPullbackAdj {T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] (P Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} (f : X Y) [P.IsStableUnderComposition] [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] [CategoryTheory.Limits.HasPullbacks T] [Q.HasOfPostcompProperty Q] (hPf : P f) (hQf : Q f) :

            P.Over.map is left adjoint to P.Over.pullback if f satisfies P.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For