Documentation

Mathlib.CategoryTheory.MorphismProperty.OverAdjunction

Adjunction of pushforward and pullback in P.Over Q X #

Under suitable assumptions on P, Q and f, a morphism f : X ⟶ Y defines two functors:

such that Over.map is the left adjoint to Over.pullback.

If P is stable under composition and f : X ⟶ Y satisfies P, this is the functor P.Over Q X ⥤ P.Over Q Y given by composing with f.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.MorphismProperty.Over.map_map_left {T : Type u_1} [Category.{v_1, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] {X Y : T} [P.IsStableUnderComposition] {f : X Y} (hPf : P f) {X✝ Y✝ : MorphismProperty.Comma (Functor.id T) (Functor.fromPUnit X) P Q } (f✝ : X✝ Y✝) :
    ((map Q hPf).map f✝).left = (Comma.Hom.hom f✝).left
    theorem CategoryTheory.MorphismProperty.Over.map_comp {T : Type u_1} [Category.{v_1, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] {X Y Z : T} [P.IsStableUnderComposition] {f : X Y} (hf : P f) {g : Y Z} (hg : P g) :
    map Q = (map Q hf).comp (map Q hg)
    def CategoryTheory.MorphismProperty.Over.mapCongr {T : Type u_1} [Category.{v_1, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] [Q.RespectsIso] {X Y : T} {f g : X Y} (hfg : f = g) (hf : P f) :
    map Q hf map Q

    Promote an equality to an isomorphism of Over.map functors.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.MorphismProperty.Over.mapCongr_hom_app_left {T : Type u_1} [Category.{v_1, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] [Q.RespectsIso] {X Y : T} {f g : X Y} (hfg : f = g) (hf : P f) (X✝ : P.Over Q X) :
      ((mapCongr Q hfg hf).hom.app X✝).left = CategoryStruct.id X✝.left
      @[simp]
      theorem CategoryTheory.MorphismProperty.Over.mapCongr_inv_app_left {T : Type u_1} [Category.{v_1, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] [Q.RespectsIso] {X Y : T} {f g : X Y} (hfg : f = g) (hf : P f) (X✝ : P.Over Q X) :
      ((mapCongr Q hfg hf).inv.app X✝).left = CategoryStruct.id X✝.left

      Over.map preserves identities.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def CategoryTheory.MorphismProperty.Over.mapComp {T : Type u_1} [Category.{v_1, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] {X Y Z : T} [P.IsStableUnderComposition] {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] (fg : X Z := CategoryStruct.comp f g) (hfg : fg = CategoryStruct.comp f g := by cat_disch) :
        map Q (map Q hf).comp (map Q hg)

        Over.map commutes with composition.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left {T : Type u_1} [Category.{v_1, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] {X Y Z : T} [P.IsStableUnderComposition] {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] (fg : X Z := CategoryStruct.comp f g) (hfg : fg = CategoryStruct.comp f g := by cat_disch) (X✝ : P.Over Q X) :
          ((mapComp Q hf hg fg hfg).inv.app X✝).left = CategoryStruct.id X✝.left
          @[simp]
          theorem CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left {T : Type u_1} [Category.{v_1, u_1} T] {P : MorphismProperty T} (Q : MorphismProperty T) [Q.IsMultiplicative] {X Y Z : T} [P.IsStableUnderComposition] {f : X Y} (hf : P f) {g : Y Z} (hg : P g) [Q.RespectsIso] (fg : X Z := CategoryStruct.comp f g) (hfg : fg = CategoryStruct.comp f g := by cat_disch) (X✝ : P.Over Q X) :
          ((mapComp Q hf hg fg hfg).hom.app X✝).left = CategoryStruct.id X✝.left

          If P and Q are stable under base change and pullbacks along f exist for morphisms in P, this is the functor P.Over Q Y ⥤ P.Over Q X given by base change along f.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Over.pullback commutes with composition.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              If f = g, then base change along f is naturally isomorphic to base change along g.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                noncomputable def CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback {T : Type u_1} [Category.{v_1, u_1} T] {P Q : MorphismProperty T} [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} (f : X Y) (hPf : P f) (hQf : Q f) (g : Y Z) [P.IsStableUnderBaseChangeAlong f] [P.IsStableUnderBaseChangeAlong g] [Q.IsStableUnderBaseChange] [Limits.HasPullbacks T] (fg : X Z := CategoryStruct.comp f g) (hfg : CategoryStruct.comp f g = fg := by cat_disch) :
                (pullback P Q fg).comp (map Q hPf) pullback P Q g

                The natural map between pullback functors induced by pullback.map.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app {T : Type u_1} [Category.{v_1, u_1} T] {P Q : MorphismProperty T} [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} (f : X Y) (hPf : P f) (hQf : Q f) (g : Y Z) [P.IsStableUnderBaseChangeAlong f] [P.IsStableUnderBaseChangeAlong g] [Q.IsStableUnderBaseChange] [Limits.HasPullbacks T] (fg : X Z := CategoryStruct.comp f g) (hfg : CategoryStruct.comp f g = fg := by cat_disch) (A : P.Over Q Z) :
                  (pullbackMapHomPullback f hPf hQf g fg hfg).app A = Over.homMk (Limits.pullback.map A.hom fg A.hom g (CategoryStruct.id A.left) f (CategoryStruct.id Z) )

                  P.Over.map is left adjoint to P.Over.pullback if pullbacks of morphisms satisfying P exist along f and are also in P, and f is in both P and Q.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For