Documentation

Mathlib.CategoryTheory.MorphismProperty.Quotient

Classes of morphisms induced on quotient categories #

Let W : MorphismProperty C and homRel : HomRel C. We assume that homRel is stable under pre- and postcomposition. We introduce a property W.HasQuotient homRel expressing that W induces a property of morphisms on the quotient category, i.e. W f ↔ W g when homRel f g holds. We denote W.quotient homRel : MorphismProperty (Quotient homRel) the induced property of morphisms: a morphism in C satisfies W iff (Quotient.functor homRel).map f does.

Let W : MorphismProperty C and homRel : HomRel C. We say that W induces a class of morphisms on the quotient category by homRel if homRel is stable under pre- and postcomposition and if W f ↔ W g whenever homRel f g hold.

  • iff X Y : C f g : X Y : homRel f g → (W f W g)
Instances
    theorem CategoryTheory.MorphismProperty.HasQuotient.iff_of_eqvGen {C : Type u_1} [Category.{v_1, u_1} C] (W : MorphismProperty C) {homRel : HomRel C} [HomRel.IsStableUnderPrecomp homRel] [HomRel.IsStableUnderPostcomp homRel] [W.HasQuotient homRel] {X Y : C} {f g : X Y} (h : Relation.EqvGen homRel f g) :
    W f W g

    The property of morphisms that is induced by W : MorphismProperty C on the quotient category by homRel : HomRel C when W.HasQuotient homRel holds.

    Equations
    Instances For
      theorem CategoryTheory.MorphismProperty.quotient_iff {C : Type u_1} [Category.{v_1, u_1} C] (W : MorphismProperty C) (homRel : HomRel C) [HomRel.IsStableUnderPrecomp homRel] [HomRel.IsStableUnderPostcomp homRel] [W.HasQuotient homRel] {X Y : C} (f : X Y) :
      W.quotient homRel ((Quotient.functor homRel).map f) W f