Preservation of limits, as a property of objects in the functor category #
We make the typeclass PreservesLimitsOfShape K (resp. PreservesFiniteLimits)
a property of objects in the functor category J ⥤ C, and show that
it is stable under colimits of shape K' when they
commute to limits of shape K (resp. to finite limits).
@[reducible, inline]
abbrev
CategoryTheory.ObjectProperty.preservesLimitsOfShape
{J : Type u_1}
{C : Type u_2}
(K : Type u_3)
[Category.{u_5, u_3} K]
[Category.{u_6, u_1} J]
[Category.{u_7, u_2} C]
:
ObjectProperty (Functor J C)
The property of objects in the functor category J ⥤ C
which preserves limits of shape K.
Equations
Instances For
@[simp]
theorem
CategoryTheory.ObjectProperty.preservesLimitsOfShape_iff
{J : Type u_1}
{C : Type u_2}
(K : Type u_3)
[Category.{u_7, u_3} K]
[Category.{u_5, u_1} J]
[Category.{u_6, u_2} C]
(F : Functor J C)
:
@[reducible, inline]
abbrev
CategoryTheory.ObjectProperty.preservesFiniteLimits
{J : Type u_1}
{C : Type u_2}
[Category.{u_5, u_1} J]
[Category.{u_6, u_2} C]
:
ObjectProperty (Functor J C)
The property of objects in the functor category J ⥤ C
which preserves finite limits.
Equations
Instances For
@[simp]
theorem
CategoryTheory.ObjectProperty.preservesFiniteLimits_iff
{J : Type u_1}
{C : Type u_2}
[Category.{u_5, u_1} J]
[Category.{u_6, u_2} C]
(F : Functor J C)
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeFunctorPreservesLimitsOfShapeOfPreservesLimitsOfShapeColim
{J : Type u_1}
{C : Type u_2}
(K : Type u_3)
(K' : Type u_4)
[Category.{u_7, u_3} K]
[Category.{u_5, u_4} K']
[Category.{u_8, u_1} J]
[Category.{u_6, u_2} C]
[Limits.HasColimitsOfShape K' C]
[Limits.PreservesLimitsOfShape K Limits.colim]
:
instance
CategoryTheory.ObjectProperty.instIsClosedUnderColimitsOfShapeFunctorPreservesFiniteLimitsOfHasExactColimitsOfShape
{J : Type u_1}
{C : Type u_2}
(K' : Type u_4)
[Category.{u_5, u_4} K']
[Category.{u_7, u_1} J]
[Category.{u_6, u_2} C]
[Limits.HasColimitsOfShape K' C]
[HasExactColimitsOfShape K' C]
: