Documentation

Mathlib.CategoryTheory.ObjectProperty.HasCardinalLT

Properties of objects that are bounded by a cardinal #

Given P : ObjectProperty C and κ : Cardinal, we introduce a predicate P.HasCardinalLT κ saying that the cardinality of Subtype P is < κ.

@[reducible, inline]

The property that the subtype of objects satisfying a property P : ObjectProperty C is of cardinality < κ.

Equations
Instances For
    theorem CategoryTheory.ObjectProperty.HasCardinalLT.iSup {C : Type u} [Category.{v, u} C] {ι : Type u_1} {P : ιObjectProperty C} {κ : Cardinal.{w}} [Fact κ.IsRegular] (hP : ∀ (i : ι), (P i).HasCardinalLT κ) ( : HasCardinalLT ι κ) :
    (⨆ (i : ι), P i).HasCardinalLT κ
    theorem CategoryTheory.ObjectProperty.HasCardinalLT.sup {C : Type u} [Category.{v, u} C] {P₁ P₂ : ObjectProperty C} {κ : Cardinal.{w}} (h₁ : P₁.HasCardinalLT κ) (h₂ : P₂.HasCardinalLT κ) ( : Cardinal.aleph0 κ) :
    (P₁P₂).HasCardinalLT κ