Documentation

Mathlib.CategoryTheory.ObjectProperty.SiteLocal

Locality conditions on object properties #

In this file we define locality conditions on object properties in a category. Let K be a precoverage in a category C and P be an object property that is closed under isomorphisms.

We say that

Implementation details #

The covers appearing in the definitions have index type in the morphism universe of C.

An object property is local if it holds for X if and only if it holds for all Uᵢ where {Uᵢ} is a K-cover of X.

  • of_iso {X Y : C} : ∀ (x : X Y), P XP Y
  • component {X : C} {R : Presieve X} (hR : R K.coverings X) {Y : C} (f : Y X) (hf : R f) : P XP Y
  • of_presieve {X : C} {R : Presieve X} (hR : R K.coverings X) (H : ∀ ⦃Y : C⦄ ⦃f : Y X⦄, R fP Y) : P X
Instances
    theorem CategoryTheory.ObjectProperty.iff_of_presieve {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {K : Precoverage C} [P.IsLocal K] {X : C} {R : Presieve X} (hR : R K.coverings X) :
    P X ∀ ⦃Y : C⦄ ⦃f : Y X⦄, R fP Y
    theorem CategoryTheory.ObjectProperty.IsLocal.mk_of_zeroHypercover {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {K : Precoverage C} [P.IsClosedUnderIsomorphisms] (H : ∀ ⦃X : C⦄ (𝒰 : K.ZeroHypercover X), P X ∀ (i : 𝒰.I₀), P (𝒰.X i)) :
    theorem CategoryTheory.ObjectProperty.of_zeroHypercover {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {K : Precoverage C} [P.IsLocal K] {X : C} (𝒰 : K.ZeroHypercover X) (h : ∀ (i : 𝒰.I₀), P (𝒰.X i)) :
    P X
    theorem CategoryTheory.ObjectProperty.iff_of_zeroHypercover {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {K : Precoverage C} [P.IsLocal K] {X : C} (𝒰 : K.ZeroHypercover X) :
    P X ∀ (i : 𝒰.I₀), P (𝒰.X i)