Documentation

Mathlib.CategoryTheory.Preadditive.Opposite

If C is preadditive, Cᵒᵖ has a natural preadditive structure. #

Equations
@[simp]
theorem CategoryTheory.unop_add (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : Cᵒᵖ} (f g : X Y) :
(f + g).unop = f.unop + g.unop
@[simp]
theorem CategoryTheory.unop_zsmul (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : Cᵒᵖ} (k : ) (f : X Y) :
(k f).unop = k f.unop
@[simp]
theorem CategoryTheory.unop_neg (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : Cᵒᵖ} (f : X Y) :
(-f).unop = -f.unop
@[simp]
theorem CategoryTheory.op_add (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : C} (f g : X Y) :
(f + g).op = f.op + g.op
@[simp]
theorem CategoryTheory.op_zsmul (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : C} (k : ) (f : X Y) :
(k f).op = k f.op
@[simp]
theorem CategoryTheory.op_neg (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : C} (f : X Y) :
(-f).op = -f.op

unop induces morphisms of monoids on hom groups of a preadditive category

Equations
Instances For
    @[simp]
    theorem CategoryTheory.unopHom_apply {C : Type u_1} [Category.{u_2, u_1} C] [Preadditive C] (X Y : Cᵒᵖ) (f : X Y) :
    (unopHom X Y) f = f.unop
    @[simp]
    theorem CategoryTheory.unop_sum {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] (X Y : Cᵒᵖ) {ι : Type u_2} (s : Finset ι) (f : ι → (X Y)) :
    (s.sum f).unop = is, (f i).unop

    op induces morphisms of monoids on hom groups of a preadditive category

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.opHom_apply {C : Type u_1} [Category.{u_2, u_1} C] [Preadditive C] (X Y : C) (f : X Y) :
      (opHom X Y) f = f.op
      @[simp]
      theorem CategoryTheory.op_sum {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] (X Y : C) {ι : Type u_2} (s : Finset ι) (f : ι → (X Y)) :
      (s.sum f).op = is, (f i).op