The associator functor ((C × D) × E) ⥤ (C × (D × E))
and its inverse form an equivalence.
@[simp]
theorem
CategoryTheory.prod.associator_obj
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
(X : (C × D) × E)
:
(CategoryTheory.prod.associator C D E).obj X = (X.1.1, X.1.2, X.2)
@[simp]
theorem
CategoryTheory.prod.associator_map
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
∀ (x x_1 : (C × D) × E) (f : x ⟶ x_1), (CategoryTheory.prod.associator C D E).map f = (f.1.1, f.1.2, f.2)
def
CategoryTheory.prod.associator
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
CategoryTheory.Functor ((C × D) × E) (C × D × E)
The associator functor (C × D) × E ⥤ C × (D × E)
.
Equations
Instances For
@[simp]
theorem
CategoryTheory.prod.inverseAssociator_obj
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
(X : C × D × E)
:
(CategoryTheory.prod.inverseAssociator C D E).obj X = ((X.1, X.2.1), X.2.2)
@[simp]
theorem
CategoryTheory.prod.inverseAssociator_map
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
∀ (x x_1 : C × D × E) (f : x ⟶ x_1), (CategoryTheory.prod.inverseAssociator C D E).map f = ((f.1, f.2.1), f.2.2)
def
CategoryTheory.prod.inverseAssociator
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
CategoryTheory.Functor (C × D × E) ((C × D) × E)
The inverse associator functor C × (D × E) ⥤ (C × D) × E
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.prod.associativity_counitIso
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
(CategoryTheory.prod.associativity C D E).counitIso = CategoryTheory.Iso.refl ((CategoryTheory.prod.inverseAssociator C D E).comp (CategoryTheory.prod.associator C D E))
@[simp]
theorem
CategoryTheory.prod.associativity_inverse
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
(CategoryTheory.prod.associativity C D E).inverse = CategoryTheory.prod.inverseAssociator C D E
@[simp]
theorem
CategoryTheory.prod.associativity_functor
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
(CategoryTheory.prod.associativity C D E).functor = CategoryTheory.prod.associator C D E
@[simp]
theorem
CategoryTheory.prod.associativity_unitIso
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
(CategoryTheory.prod.associativity C D E).unitIso = CategoryTheory.Iso.refl (CategoryTheory.Functor.id ((C × D) × E))
def
CategoryTheory.prod.associativity
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
The equivalence of categories expressing associativity of products of categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.prod.associatorIsEquivalence
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
(CategoryTheory.prod.associator C D E).IsEquivalence
Equations
- ⋯ = ⋯
instance
CategoryTheory.prod.inverseAssociatorIsEquivalence
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
(D : Type u₂)
[CategoryTheory.Category.{v₂, u₂} D]
(E : Type u₃)
[CategoryTheory.Category.{v₃, u₃} E]
:
(CategoryTheory.prod.inverseAssociator C D E).IsEquivalence
Equations
- ⋯ = ⋯