Category of sheaves is abelian #
Let C, D
be categories and J
be a grothendieck topology on C
, when D
is abelian and
sheafification is possible in C
, Sheaf J D
is abelian as well (sheafIsAbelian
).
Hence, presheafToSheaf
is an additive functor (presheafToSheaf_additive
).
instance
CategoryTheory.sheafIsAbelian
{C : Type u}
[Category.{v, u} C]
{D : Type w}
[Category.{w', w} D]
[Abelian D]
{J : GrothendieckTopology C}
[HasSheafify J D]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.presheafToSheaf_additive
{C : Type u}
[Category.{v, u} C]
{D : Type w}
[Category.{w', w} D]
[Abelian D]
{J : GrothendieckTopology C}
[HasSheafify J D]
:
(presheafToSheaf J D).Additive