Covers in subcanonical topologies #
In this file we provide API related to covers in subcanonical topologies.
noncomputable def
CategoryTheory.GrothendieckTopology.OneHypercover.glueMorphisms
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
[J.Subcanonical]
{S T : C}
(E : J.OneHypercover S)
(f : (i : E.I₀) → E.X i ⟶ T)
(h : ∀ ⦃i j : E.I₀⦄ (k : E.I₁ i j), CategoryStruct.comp (E.p₁ k) (f i) = CategoryStruct.comp (E.p₂ k) (f j))
:
Glue a family of morphisms along a 1-hypercover for a subcanonical topology.
Equations
- E.glueMorphisms f h = E.amalgamate ⋯ f h
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
[J.Subcanonical]
{S T : C}
(E : J.OneHypercover S)
(f : (i : E.I₀) → E.X i ⟶ T)
(h : ∀ ⦃i j : E.I₀⦄ (k : E.I₁ i j), CategoryStruct.comp (E.p₁ k) (f i) = CategoryStruct.comp (E.p₂ k) (f j))
(i : E.I₀)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms_assoc
{C : Type u}
[Category.{v, u} C]
{J : GrothendieckTopology C}
[J.Subcanonical]
{S T : C}
(E : J.OneHypercover S)
(f : (i : E.I₀) → E.X i ⟶ T)
(h : ∀ ⦃i j : E.I₀⦄ (k : E.I₁ i j), CategoryStruct.comp (E.p₁ k) (f i) = CategoryStruct.comp (E.p₂ k) (f j))
(i : E.I₀)
{Z : C}
(h✝ : T ⟶ Z)
:
CategoryStruct.comp (E.f i) (CategoryStruct.comp (E.glueMorphisms f h) h✝) = CategoryStruct.comp (f i) h✝
theorem
CategoryTheory.Precoverage.ZeroHypercover.hom_ext
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
{X Y : C}
(𝒰 : J.ZeroHypercover X)
{f g : X ⟶ Y}
(h : ∀ (i : 𝒰.I₀), CategoryStruct.comp (𝒰.f i) f = CategoryStruct.comp (𝒰.f i) g)
:
noncomputable def
CategoryTheory.Precoverage.ZeroHypercover.glueMorphisms
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
{S T : C}
(𝒰 : J.ZeroHypercover S)
[𝒰.HasPullbacks]
(f : (i : 𝒰.I₀) → 𝒰.X i ⟶ T)
(hf :
∀ (i j : 𝒰.I₀),
CategoryStruct.comp (Limits.pullback.fst (𝒰.f i) (𝒰.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (𝒰.f i) (𝒰.f j)) (f j))
:
Glue morphisms along a 0-hypercover.
Equations
- 𝒰.glueMorphisms f hf = 𝒰.toOneHypercover.glueMorphisms f ⋯
Instances For
@[simp]
theorem
CategoryTheory.Precoverage.ZeroHypercover.f_glueMorphisms
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
{S T : C}
(𝒰 : J.ZeroHypercover S)
[𝒰.HasPullbacks]
(f : (i : 𝒰.I₀) → 𝒰.X i ⟶ T)
(hf :
∀ (i j : 𝒰.I₀),
CategoryStruct.comp (Limits.pullback.fst (𝒰.f i) (𝒰.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (𝒰.f i) (𝒰.f j)) (f j))
(i : 𝒰.I₀)
:
@[simp]
theorem
CategoryTheory.Precoverage.ZeroHypercover.f_glueMorphisms_assoc
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
{S T : C}
(𝒰 : J.ZeroHypercover S)
[𝒰.HasPullbacks]
(f : (i : 𝒰.I₀) → 𝒰.X i ⟶ T)
(hf :
∀ (i j : 𝒰.I₀),
CategoryStruct.comp (Limits.pullback.fst (𝒰.f i) (𝒰.f j)) (f i) = CategoryStruct.comp (Limits.pullback.snd (𝒰.f i) (𝒰.f j)) (f j))
(i : 𝒰.I₀)
{Z : C}
(h : T ⟶ Z)
:
CategoryStruct.comp (𝒰.f i) (CategoryStruct.comp (𝒰.glueMorphisms f hf) h) = CategoryStruct.comp (f i) h
instance
CategoryTheory.Precoverage.ZeroHypercover.instIsLocalAtTargetIsomorphisms
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
[Limits.HasPullbacks C]
[J.IsStableUnderBaseChange]
:
If J is a subcanonical precoverage, isomorphisms are local on the target for J.
theorem
CategoryTheory.Precoverage.ZeroHypercover.isPullback_of_forall_isPullback
{C : Type u}
[Category.{v, u} C]
{J : Precoverage C}
[J.toGrothendieck.Subcanonical]
[Limits.HasPullbacks C]
[J.IsStableUnderBaseChange]
{P X Y Z : C}
(fst : P ⟶ X)
(snd : P ⟶ Y)
(f : X ⟶ Z)
(g : Y ⟶ Z)
(𝒰 : J.ZeroHypercover X)
(H :
∀ (i : 𝒰.I₀),
IsPullback (Limits.pullback.snd fst (𝒰.f i)) (CategoryStruct.comp (Limits.pullback.fst fst (𝒰.f i)) snd)
(CategoryStruct.comp (𝒰.f i) f) g)
:
IsPullback fst snd f g
To show that
P ---> X
| |
v v
Y ---> Z
is a pullback square, it suffices to check that
P ×[X] Uᵢ ---> Uᵢ
| |
v v
Y --------> Z
is a pullback square for all Uᵢ in a cover of X for some subcanonical topology.