Locality conditions on morphism properties #
In this file we define locality conditions on morphism properties in a category. Let K
be a
precoverage in a category C
and P
be a morphism property on C
that respects isomorphisms.
We say that
P
is local at the target if for everyf : X ⟶ Y
,P
holds forf
if and only if it holds for the restrictions off
toUᵢ
for aK
-cover{Uᵢ}
ofY
.P
is local at the source if for everyf : X ⟶ Y
,P
holds forf
if and only if it holds for the restrictions off
toUᵢ
for aK
-cover{Uᵢ}
ofX
.
Implementation details #
The covers appearing in the definitions have index type in the morphism universe of C
.
TODOs #
- Define source and target local closure of a morphism property.
A property of morphisms P
in C
is local at the target with respect to the precoverage K
if
it respects ismorphisms, and:
P
holds for f : X ⟶ Y
if and only if it holds for the restrictions of f
to Uᵢ
for a
0
-hypercover {Uᵢ}
of Y
in the precoverage K
.
- precomp {X Y Z : C} (i : X ⟶ Y) (hi : isomorphisms C i) (f : Y ⟶ Z) (hf : P f) : P (CategoryStruct.comp i f)
- postcomp {X Y Z : C} (i : Y ⟶ Z) (hi : isomorphisms C i) (f : X ⟶ Y) (hf : P f) : P (CategoryStruct.comp f i)
- pullbackSnd {X Y : C} {f : X ⟶ Y} (𝒰 : K.ZeroHypercover Y) (i : 𝒰.I₀) (hf : P f) : P (Limits.pullback.snd f (𝒰.f i))
If
P
holds forf : X ⟶ Y
, it also holds forf
restricted toUᵢ
for anyK
-cover𝒰
ofY
. - of_zeroHypercover {X Y : C} {f : X ⟶ Y} (𝒰 : K.ZeroHypercover Y) (h : ∀ (i : 𝒰.I₀), P (Limits.pullback.snd f (𝒰.f i))) : P f
If
P
holds forf
restricted toUᵢ
for alli
, it also holds forf : X ⟶ Y
for anyK
-cover𝒰
ofY
.
Instances
Alias of CategoryTheory.MorphismProperty.IsLocalAtTarget.of_zeroHypercover
.
If P
holds for f
restricted to Uᵢ
for all i
, it also holds for f : X ⟶ Y
for any
K
-cover 𝒰
of Y
.
Alias of CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover
.
A property of morphisms P
in C
is local at the source with respect to the precoverage K
if
it respects ismorphisms, and:
P
holds for f : X ⟶ Y
if and only if it holds for the restrictions of f
to Uᵢ
for a
0
-hypercover {Uᵢ}
of X
in the precoverage K
.
- precomp {X Y Z : C} (i : X ⟶ Y) (hi : isomorphisms C i) (f : Y ⟶ Z) (hf : P f) : P (CategoryStruct.comp i f)
- postcomp {X Y Z : C} (i : Y ⟶ Z) (hi : isomorphisms C i) (f : X ⟶ Y) (hf : P f) : P (CategoryStruct.comp f i)
- comp {X Y : C} {f : X ⟶ Y} (𝒰 : K.ZeroHypercover X) (i : 𝒰.I₀) (hf : P f) : P (CategoryStruct.comp (𝒰.f i) f)
If
P
holds forf : X ⟶ Y
, it also holds for𝒰.f i ≫ f
for anyK
-cover𝒰
ofX
. - of_zeroHypercover {X Y : C} {f : X ⟶ Y} (𝒰 : K.ZeroHypercover X) : (∀ (i : 𝒰.I₀), P (CategoryStruct.comp (𝒰.f i) f)) → P f
If
P
holds for𝒰.f i ≫ f
for alli
, it holds forf : X ⟶ Y
for anyK
-cover𝒰
of X.
Instances
Alias of CategoryTheory.MorphismProperty.IsLocalAtSource.of_zeroHypercover
.
If P
holds for 𝒰.f i ≫ f
for all i
, it holds for f : X ⟶ Y
for any K
-cover
𝒰
of X.
Alias of CategoryTheory.MorphismProperty.IsLocalAtSource.iff_of_zeroHypercover
.