Documentation

Mathlib.CategoryTheory.MorphismProperty.Local

Locality conditions on morphism properties #

In this file we define locality conditions on morphism properties in a category. Let K be a precoverage in a category C and P be a morphism property on C that respects isomorphisms.

We say that

Implementation details #

The covers appearing in the definitions have index type in the morphism universe of C.

TODOs #

A property of morphisms P in C is local at the target with respect to the precoverage K if it respects ismorphisms, and: P holds for f : X ⟶ Y if and only if it holds for the restrictions of f to Uᵢ for a 0-hypercover {Uᵢ} of Y in the precoverage K.

Instances
    theorem CategoryTheory.MorphismProperty.IsLocalAtTarget.mk_of_iff {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} {K : Precoverage C} [K.HasPullbacks] [P.RespectsIso] (H : ∀ {X Y : C} (f : X Y) (𝒰 : K.ZeroHypercover Y), P f ∀ (i : 𝒰.I₀), P (Limits.pullback.snd f (𝒰.f i))) :
    theorem CategoryTheory.MorphismProperty.IsLocalAtTarget.of_isPullback {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} {K : Precoverage C} [K.HasPullbacks] [P.IsLocalAtTarget K] {X Y : C} {f : X Y} (𝒰 : K.ZeroHypercover Y) {X' : C} (i : 𝒰.I₀) {fst : X' X} {snd : X' 𝒰.X i} (h : IsPullback fst snd f (𝒰.f i)) (hf : P f) :
    P snd
    theorem CategoryTheory.MorphismProperty.of_zeroHypercover_target {C : Type u} {inst✝ : Category.{v, u} C} {P : MorphismProperty C} {K : Precoverage C} {inst✝¹ : K.HasPullbacks} [self : P.IsLocalAtTarget K] {X Y : C} {f : X Y} (𝒰 : K.ZeroHypercover Y) (h : ∀ (i : 𝒰.I₀), P (Limits.pullback.snd f (𝒰.f i))) :
    P f

    Alias of CategoryTheory.MorphismProperty.IsLocalAtTarget.of_zeroHypercover.


    If P holds for f restricted to Uᵢ for all i, it also holds for f : X ⟶ Y for any K-cover 𝒰 of Y.

    A property of morphisms P in C is local at the source with respect to the precoverage K if it respects ismorphisms, and: P holds for f : X ⟶ Y if and only if it holds for the restrictions of f to Uᵢ for a 0-hypercover {Uᵢ} of X in the precoverage K.

    Instances
      theorem CategoryTheory.MorphismProperty.IsLocalAtSource.mk_of_iff {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} {K : Precoverage C} [P.RespectsIso] (H : ∀ {X Y : C} (f : X Y) (𝒰 : K.ZeroHypercover X), P f ∀ (i : 𝒰.I₀), P (CategoryStruct.comp (𝒰.f i) f)) :
      theorem CategoryTheory.MorphismProperty.IsLocalAtSource.iff_of_zeroHypercover {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} {K : Precoverage C} [P.IsLocalAtSource K] {X Y : C} {f : X Y} (𝒰 : K.ZeroHypercover X) :
      P f ∀ (i : 𝒰.I₀), P (CategoryStruct.comp (𝒰.f i) f)
      theorem CategoryTheory.MorphismProperty.of_zeroHypercover_source {C : Type u} {inst✝ : Category.{v, u} C} {P : MorphismProperty C} {K : Precoverage C} [self : P.IsLocalAtSource K] {X Y : C} {f : X Y} (𝒰 : K.ZeroHypercover X) :
      (∀ (i : 𝒰.I₀), P (CategoryStruct.comp (𝒰.f i) f))P f

      Alias of CategoryTheory.MorphismProperty.IsLocalAtSource.of_zeroHypercover.


      If P holds for 𝒰.f i ≫ f for all i, it holds for f : X ⟶ Y for any K-cover 𝒰 of X.