The site induced by a morphism property #
Let C
be a category with pullbacks and P
be a multiplicative morphism property which is
stable under base change. Then P
induces a pretopology, where coverings are given by presieves
whose elements satisfy P
.
Standard examples of pretopologies in algebraic geometry, such as the étale site, are obtained from this construction by intersecting with the pretopology of surjective families.
def
CategoryTheory.MorphismProperty.pretopology
{C : Type u_1}
[Category.{u_2, u_1} C]
[Limits.HasPullbacks C]
(P : MorphismProperty C)
[P.IsMultiplicative]
[P.IsStableUnderBaseChange]
:
If P
is a multiplicative morphism property which is stable under base change on a category
C
with pullbacks, then P
induces a pretopology, where coverings are given by presieves whose
elements satisfy P
.
Equations
- P.pretopology = { coverings := fun (X : C) (S : CategoryTheory.Presieve X) => ∀ {Y : C} {f : Y ⟶ X}, S f → P f, has_isos := ⋯, pullbacks := ⋯, transitive := ⋯ }
Instances For
@[reducible, inline]
abbrev
CategoryTheory.MorphismProperty.grothendieckTopology
{C : Type u_1}
[Category.{u_2, u_1} C]
[Limits.HasPullbacks C]
(P : MorphismProperty C)
[P.IsMultiplicative]
[P.IsStableUnderBaseChange]
:
To a morphism property P
satisfying the conditions of MorphismProperty.pretopology
, we
associate the Grothendieck topology generated by P.pretopology
.
Equations
- P.grothendieckTopology = CategoryTheory.Pretopology.toGrothendieck C P.pretopology
Instances For
theorem
CategoryTheory.MorphismProperty.pretopology_le
{C : Type u_1}
[Category.{u_2, u_1} C]
[Limits.HasPullbacks C]
{P Q : MorphismProperty C}
[P.IsMultiplicative]
[P.IsStableUnderBaseChange]
[Q.IsMultiplicative]
[Q.IsStableUnderBaseChange]
(hPQ : P ≤ Q)
:
P.pretopology ≤ Q.pretopology
theorem
CategoryTheory.MorphismProperty.pretopology_inf
{C : Type u_1}
[Category.{u_2, u_1} C]
[Limits.HasPullbacks C]
(P Q : MorphismProperty C)
[P.IsMultiplicative]
[P.IsStableUnderBaseChange]
[Q.IsMultiplicative]
[Q.IsStableUnderBaseChange]
: