Documentation

Mathlib.CategoryTheory.Sites.Over

Localization

In this file, given a Grothendieck topology J on a category C and X : C, we construct a Grothendieck topology J.over X on the category Over X. In order to do this, we first construct a bijection Sieve.overEquiv Y : Sieve Y ≃ Sieve Y.left for all Y : Over X. Then, as it is stated in SGA 4 III 5.2.1, a sieve of Y : Over X is covering for J.over X if and only if the corresponding sieve of Y.left is covering for J. As a result, the forgetful functor Over.forget X : Over X ⥤ X is both cover-preserving and cover-lifting.

def CategoryTheory.Sieve.overEquiv {C : Type u} [Category.{v, u} C] {X : C} (Y : Over X) :
Sieve Y Sieve Y.left

The equivalence Sieve Y ≃ Sieve Y.left for all Y : Over X.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    @[simp]
    theorem CategoryTheory.Sieve.overEquiv_symm_top {C : Type u} [Category.{v, u} C] {X : C} (Y : Over X) :
    (overEquiv Y).symm =
    theorem CategoryTheory.Sieve.overEquiv_le_overEquiv_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (R₁ R₂ : Sieve Y) :
    (overEquiv Y) R₁ (overEquiv Y) R₂ R₁ R₂
    theorem CategoryTheory.Sieve.overEquiv_pullback {C : Type u} [Category.{v, u} C] {X : C} {Y₁ Y₂ : Over X} (f : Y₁ Y₂) (S : Sieve Y₂) :
    (overEquiv Y₁) (pullback f S) = pullback f.left ((overEquiv Y₂) S)
    @[simp]
    theorem CategoryTheory.Sieve.overEquiv_symm_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (S : Sieve Y.left) {Z : Over X} (f : Z Y) :
    ((overEquiv Y).symm S).arrows f S.arrows f.left
    theorem CategoryTheory.Sieve.overEquiv_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (S : Sieve Y) {Z : C} (f : Z Y.left) :
    ((overEquiv Y) S).arrows f S.arrows (Over.homMk f )
    @[simp]
    theorem CategoryTheory.Sieve.functorPushforward_over_map {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) (Z : Over X) (S : Sieve Z.left) :
    functorPushforward (Over.map f) ((overEquiv Z).symm S) = (overEquiv ((Over.map f).obj Z)).symm S

    The Grothendieck topology on the category Over X for any X : C that is induced by a Grothendieck topology on C.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.GrothendieckTopology.mem_over_iff {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {X : C} {Y : Over X} (S : Sieve Y) :
      S (J.over X) Y (Sieve.overEquiv Y) S J Y.left
      theorem CategoryTheory.GrothendieckTopology.overEquiv_symm_mem_over {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {X : C} (Y : Over X) (S : Sieve Y.left) (hS : S J Y.left) :
      (Sieve.overEquiv Y).symm S (J.over X) Y
      @[reducible, inline]

      The pullback functor Sheaf J A ⥤ Sheaf (J.over X) A

      Equations
      Instances For
        instance CategoryTheory.GrothendieckTopology.instIsContinuousOverMapOver {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {X Y : C} (f : X Y) :
        (Over.map f).IsContinuous (J.over X) (J.over Y)
        @[reducible, inline]
        abbrev CategoryTheory.GrothendieckTopology.overMapPullback {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y : C} (f : X Y) :
        Functor (Sheaf (J.over Y) A) (Sheaf (J.over X) A)

        The pullback functor Sheaf (J.over Y) A ⥤ Sheaf (J.over X) A induced by a morphism f : X ⟶ Y.

        Equations
        Instances For
          @[reducible, inline]
          abbrev CategoryTheory.Sheaf.over {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] (F : Sheaf J A) (X : C) :
          Sheaf (J.over X) A

          Given F : Sheaf J A and X : C, this is the pullback of F on J.over X.

          Equations
          • F.over X = (J.overPullback A X).obj F
          Instances For