Documentation

Mathlib.CategoryTheory.Sites.Over

Localization

In this file, given a Grothendieck topology J on a category C and X : C, we construct a Grothendieck topology J.over X on the category Over X. In order to do this, we first construct a bijection Sieve.overEquiv Y : Sieve Y ≃ Sieve Y.left for all Y : Over X. Then, as it is stated in SGA 4 III 5.2.1, a sieve of Y : Over X is covering for J.over X if and only if the corresponding sieve of Y.left is covering for J. As a result, the forgetful functor Over.forget X : Over X ⥤ X is both cover-preserving and cover-lifting.

The equivalence Sieve Y ≃ Sieve Y.left for all Y : Over X.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Sieve.overEquiv_le_overEquiv_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (R₁ R₂ : Sieve Y) :
    (overEquiv Y) R₁ (overEquiv Y) R₂ R₁ R₂
    theorem CategoryTheory.Sieve.overEquiv_pullback {C : Type u} [Category.{v, u} C] {X : C} {Y₁ Y₂ : Over X} (f : Y₁ Y₂) (S : Sieve Y₂) :
    (overEquiv Y₁) (pullback f S) = pullback f.left ((overEquiv Y₂) S)
    theorem CategoryTheory.Sieve.overEquiv_symm_pullback {C : Type u} [Category.{v, u} C] {X : C} {Y₁ Y₂ : Over X} (f : Y₁ Y₂) (S : Sieve Y₂.left) :
    (overEquiv Y₁).symm (pullback f.left S) = pullback f ((overEquiv Y₂).symm S)
    @[simp]
    theorem CategoryTheory.Sieve.overEquiv_symm_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (S : Sieve Y.left) {Z : Over X} (f : Z Y) :
    theorem CategoryTheory.Sieve.overEquiv_iff {C : Type u} [Category.{v, u} C] {X : C} {Y : Over X} (S : Sieve Y) {Z : C} (f : Z Y.left) :
    ((overEquiv Y) S).arrows f S.arrows (Over.homMk f )
    @[simp]

    The Grothendieck topology on the category Over X for any X : C that is induced by a Grothendieck topology on C.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[reducible, inline]

      The pullback functor Sheaf J A ⥤ Sheaf (J.over X) A

      Equations
      Instances For
        @[reducible, inline]

        The pullback functor Sheaf (J.over Y) A ⥤ Sheaf (J.over X) A induced by a morphism f : X ⟶ Y.

        Equations
        Instances For

          Two identical morphisms give isomorphic overMapPullback functors on sheaves.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y : C} {f g : X Y} (h : f = g) (M : Sheaf (J.over Y) A) (X✝ : (Over X)ᵒᵖ) :
            @[simp]
            theorem CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y : C} {f g : X Y} (h : f = g) (M : Sheaf (J.over Y) A) (X✝ : (Over X)ᵒᵖ) :
            @[simp]
            theorem CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] (X : C) (X✝ : Sheaf (J.over X) A) (X✝¹ : (Over X)ᵒᵖ) :
            ((J.overMapPullbackId A X).hom.app X✝).val.app X✝¹ = X✝.val.map ((Over.mapId X).inv.app (Opposite.unop X✝¹)).op
            @[simp]
            theorem CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] (X : C) (X✝ : Sheaf (J.over X) A) (X✝¹ : (Over X)ᵒᵖ) :
            ((J.overMapPullbackId A X).inv.app X✝).val.app X✝¹ = X✝.val.map ((Over.mapId X).hom.app (Opposite.unop X✝¹)).op

            The composition of two overMapPullback functors identifies to overMapPullback for the composition.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y Z : C} (f : X Y) (g : Y Z) (X✝ : Sheaf (J.over Z) A) (X✝¹ : (Over X)ᵒᵖ) :
              ((J.overMapPullbackComp A f g).inv.app X✝).val.app X✝¹ = X✝.val.map ((Over.mapComp f g).inv.app (Opposite.unop X✝¹)).op
              @[simp]
              theorem CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (A : Type u') [Category.{v', u'} A] {X Y Z : C} (f : X Y) (g : Y Z) (X✝ : Sheaf (J.over Z) A) (X✝¹ : (Over X)ᵒᵖ) :
              ((J.overMapPullbackComp A f g).hom.app X✝).val.app X✝¹ = X✝.val.map ((Over.mapComp f g).hom.app (Opposite.unop X✝¹)).op
              @[reducible, inline]
              abbrev CategoryTheory.Sheaf.over {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] (F : Sheaf J A) (X : C) :
              Sheaf (J.over X) A

              Given F : Sheaf J A and X : C, this is the pullback of F on J.over X.

              Equations
              Instances For

                The Grothendieck topology on Over X, obtained from localizing the topology generated by the precoverage K, is generated by the preimage of K.