Documentation

Mathlib.CategoryTheory.Sites.Plus

The plus construction for presheaves. #

This file contains the construction of P⁺, for a presheaf P : Cᵒᵖ ⥤ D where C is endowed with a grothendieck topology J.

See https://stacks.math.columbia.edu/tag/00W1 for details.

The diagram whose colimit defines the values of plus.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def CategoryTheory.GrothendieckTopology.diagramPullback {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w} [CategoryTheory.Category.{max v u, w} D] [∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : J.Cover X), CategoryTheory.Limits.HasMultiequalizer (S.index P)] (P : CategoryTheory.Functor Cᵒᵖ D) {X Y : C} (f : X Y) :
    J.diagram P Y (J.pullback f).op.comp (J.diagram P X)

    A helper definition used to define the morphisms for plus.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.diagramPullback_app {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w} [CategoryTheory.Category.{max v u, w} D] [∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : J.Cover X), CategoryTheory.Limits.HasMultiequalizer (S.index P)] (P : CategoryTheory.Functor Cᵒᵖ D) {X Y : C} (f : X Y) (S : (J.Cover Y)ᵒᵖ) :
      (J.diagramPullback P f).app S = CategoryTheory.Limits.Multiequalizer.lift ((Opposite.unop ((J.pullback f).op.obj S)).index P) ((J.diagram P Y).obj S) (fun (I : ((Opposite.unop ((J.pullback f).op.obj S)).index P).L) => CategoryTheory.Limits.Multiequalizer.ι ((Opposite.unop S).index P) (CategoryTheory.GrothendieckTopology.Cover.Arrow.base I))

      A natural transformation P ⟶ Q induces a natural transformation between diagrams whose colimits define the values of plus.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.GrothendieckTopology.diagramNatTrans_app {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w} [CategoryTheory.Category.{max v u, w} D] [∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : J.Cover X), CategoryTheory.Limits.HasMultiequalizer (S.index P)] {P Q : CategoryTheory.Functor Cᵒᵖ D} (η : P Q) (X : C) (W : (J.Cover X)ᵒᵖ) :
        (J.diagramNatTrans η X).app W = CategoryTheory.Limits.Multiequalizer.lift ((Opposite.unop W).index Q) ((J.diagram P X).obj W) (fun (x : ((Opposite.unop W).index Q).L) => CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Multiequalizer.ι ((Opposite.unop W).index P) x) (η.app (Opposite.op x.Y)))
        @[simp]
        theorem CategoryTheory.GrothendieckTopology.diagramNatTrans_comp {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w} [CategoryTheory.Category.{max v u, w} D] [∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : J.Cover X), CategoryTheory.Limits.HasMultiequalizer (S.index P)] {P Q R : CategoryTheory.Functor Cᵒᵖ D} (η : P Q) (γ : Q R) (X : C) :
        J.diagramNatTrans (CategoryTheory.CategoryStruct.comp η γ) X = CategoryTheory.CategoryStruct.comp (J.diagramNatTrans η X) (J.diagramNatTrans γ X)

        J.diagram P, as a functor in P.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.GrothendieckTopology.diagramFunctor_map {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (D : Type w) [CategoryTheory.Category.{max v u, w} D] [∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : J.Cover X), CategoryTheory.Limits.HasMultiequalizer (S.index P)] (X : C) {X✝ Y✝ : CategoryTheory.Functor Cᵒᵖ D} (η : X✝ Y✝) :
          (J.diagramFunctor D X).map η = J.diagramNatTrans η X

          The plus construction, associating a presheaf to any presheaf. See plusFunctor below for a functorial version.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            An auxiliary definition used in plus below.

            Equations
            Instances For

              The plus construction, a functor sending P to J.plusObj P.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.GrothendieckTopology.plusFunctor_map {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (D : Type w) [CategoryTheory.Category.{max v u, w} D] [∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : J.Cover X), CategoryTheory.Limits.HasMultiequalizer (S.index P)] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {X✝ Y✝ : CategoryTheory.Functor Cᵒᵖ D} (η : X✝ Y✝) :
                (J.plusFunctor D).map η = J.plusMap η

                The canonical map from P to J.plusObj P. See toPlusNatTrans for a functorial version.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The natural transformation from the identity functor to plus.

                  Equations
                  Instances For
                    @[simp]

                    (P ⟶ P⁺)⁺ = P⁺ ⟶ P⁺⁺

                    The natural isomorphism between P and P⁺ when P is a sheaf.

                    Equations
                    Instances For

                      Lift a morphism P ⟶ Q to P⁺ ⟶ Q when Q is a sheaf.

                      Equations
                      Instances For