Sheaves on Over categories, as a pseudofunctor #
Given a Grothendieck topology J on a category C and
a category A, we define the pseudofunctor
J.pseudofunctorOver A : Pseudofunctor (LocallyDiscrete Cᵒᵖ) Cat
which sends X : C to the category of sheaves on Over X
with values in A.
def
CategoryTheory.GrothendieckTopology.pseudofunctorOver
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
:
Given a Grothendieck topology J on a category C and a category A,
this is the pseudofunctor which sends X : C to the categories of
sheaves on Over X with values in A.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_map_val_app
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
{X✝ Y✝ : LocallyDiscrete Cᵒᵖ}
(f : X✝ ⟶ Y✝)
{X✝¹ Y✝¹ : Sheaf (J.over (Opposite.unop X✝.as)) A}
(f✝ : X✝¹ ⟶ Y✝¹)
(X : (Over (Opposite.unop Y✝.as))ᵒᵖ)
:
(((J.pseudofunctorOver A).map f).map f✝).val.app X = f✝.val.app (Opposite.op ((Over.map f.as.unop).obj (Opposite.unop X)))
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_obj_val_map
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
{X✝ Y✝ : LocallyDiscrete Cᵒᵖ}
(f : X✝ ⟶ Y✝)
(ℱ : Sheaf (J.over (Opposite.unop X✝.as)) A)
{X✝¹ Y✝¹ : (Over (Opposite.unop Y✝.as))ᵒᵖ}
(f✝ : X✝¹ ⟶ Y✝¹)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_app_val_app
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
(x✝ : LocallyDiscrete Cᵒᵖ)
(X : Sheaf (J.over (Opposite.unop x✝.as)) A)
(X✝ : (Over (Opposite.unop x✝.as))ᵒᵖ)
:
(((J.pseudofunctorOver A).mapId x✝).inv.app X).val.app X✝ = X.val.map ((Over.mapId (Opposite.unop x✝.as)).hom.app (Opposite.unop X✝)).op
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_obj_val_obj
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
{X✝ Y✝ : LocallyDiscrete Cᵒᵖ}
(f : X✝ ⟶ Y✝)
(ℱ : Sheaf (J.over (Opposite.unop X✝.as)) A)
(X : (Over (Opposite.unop Y✝.as))ᵒᵖ)
:
(((J.pseudofunctorOver A).map f).obj ℱ).val.obj X = ℱ.val.obj (Opposite.op ((Over.map f.as.unop).obj (Opposite.unop X)))
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_app_val_app
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
(x✝ : LocallyDiscrete Cᵒᵖ)
(X : Sheaf (J.over (Opposite.unop x✝.as)) A)
(X✝ : (Over (Opposite.unop x✝.as))ᵒᵖ)
:
(((J.pseudofunctorOver A).mapId x✝).hom.app X).val.app X✝ = X.val.map ((Over.mapId (Opposite.unop x✝.as)).inv.app (Opposite.unop X✝)).op
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_app_val_app
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
{a✝ b✝ c✝ : LocallyDiscrete Cᵒᵖ}
(x✝ : a✝ ⟶ b✝)
(x✝¹ : b✝ ⟶ c✝)
(X : Sheaf (J.over (Opposite.unop a✝.as)) A)
(X✝ : (Over (Opposite.unop c✝.as))ᵒᵖ)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_app_val_app
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
{a✝ b✝ c✝ : LocallyDiscrete Cᵒᵖ}
(x✝ : a✝ ⟶ b✝)
(x✝¹ : b✝ ⟶ c✝)
(X : Sheaf (J.over (Opposite.unop a✝.as)) A)
(X✝ : (Over (Opposite.unop c✝.as))ᵒᵖ)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
(b : LocallyDiscrete Cᵒᵖ)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
(b : LocallyDiscrete Cᵒᵖ)
(x✝ : Sheaf (J.over (Opposite.unop b.as)) A)
(X : (Over (Opposite.unop b.as))ᵒᵖ)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
(b : LocallyDiscrete Cᵒᵖ)
{X✝ Y✝ Z✝ : Sheaf (J.over (Opposite.unop b.as)) A}
(f : X✝.Hom Y✝)
(g : Y✝.Hom Z✝)
(X : (Over (Opposite.unop b.as))ᵒᵖ)
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_map₂
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u')
[Category.{v', u'} A]
{a✝ b✝ : LocallyDiscrete Cᵒᵖ}
{f✝ g✝ : a✝ ⟶ b✝}
(φ : f✝ ⟶ g✝)
: