Documentation

Mathlib.CategoryTheory.Sites.Pullback

Pullback of sheaves #

Main definitions #

def CategoryTheory.Functor.sheafPullback {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] (G : Functor C D) (A : Type u₁) [Category.{v₁, u₁} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) [G.IsContinuous J K] [(G.sheafPushforwardContinuous A J K).IsRightAdjoint] :
Functor (Sheaf J A) (Sheaf K A)

The pullback functor Sheaf J A ⥤ Sheaf K A associated to a functor G : C ⥤ D in the same direction as G.

Equations
  • G.sheafPullback A J K = (G.sheafPushforwardContinuous A J K).leftAdjoint
Instances For
    def CategoryTheory.Functor.sheafAdjunctionContinuous {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] (G : Functor C D) (A : Type u₁) [Category.{v₁, u₁} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) [G.IsContinuous J K] [(G.sheafPushforwardContinuous A J K).IsRightAdjoint] :
    G.sheafPullback A J K G.sheafPushforwardContinuous A J K

    The pullback functor is left adjoint to the pushforward functor.

    Equations
    Instances For

      Construction of the pullback of sheaves using a left Kan extension.

      Equations
      Instances For
        def CategoryTheory.Functor.sheafPullbackConstruction.sheafAdjunctionContinuous {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] (G : Functor C D) (A : Type u₁) [Category.{v₁, u₁} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) [∀ (F : Functor Cᵒᵖ A), G.op.HasLeftKanExtension F] [G.IsContinuous J K] [HasWeakSheafify K A] :
        sheafPullback G A J K G.sheafPushforwardContinuous A J K

        The constructed sheafPullback G A J K is left adjoint to G.sheafPushforwardContinuous A J K.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          instance CategoryTheory.Functor.sheafPullbackConstruction.instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] (G : Functor C D) (A : Type u₁) [Category.{v₁, u₁} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) [G.IsContinuous J K] [∀ (F : Functor Cᵒᵖ A), G.op.HasLeftKanExtension F] [HasWeakSheafify K A] :
          (G.sheafPushforwardContinuous A J K).IsRightAdjoint
          def CategoryTheory.Functor.sheafPullbackConstruction.sheafPullbackIso {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] (G : Functor C D) (A : Type u₁) [Category.{v₁, u₁} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) [G.IsContinuous J K] [∀ (F : Functor Cᵒᵖ A), G.op.HasLeftKanExtension F] [HasWeakSheafify K A] :
          G.sheafPullback A J K sheafPullback G A J K

          The constructed pullback of sheaves is isomorphic to the abstract one.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            instance CategoryTheory.Functor.sheafPullbackConstruction.preservesFiniteLimits {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] (G : Functor C D) (A : Type u₁) [Category.{v₁, u₁} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) [G.IsContinuous J K] [∀ (F : Functor Cᵒᵖ A), G.op.HasLeftKanExtension F] [HasSheafify K A] [HasSheafify J A] [Limits.PreservesFiniteLimits G.op.lan] :
            Limits.PreservesFiniteLimits (G.sheafPullback A J K)