Documentation

Mathlib.CategoryTheory.Sites.Subsheaf

Subsheaf of types #

We define the sub(pre)sheaf of a type valued presheaf.

Main results #

A subpresheaf of a presheaf consists of a subset of F.obj U for every U, compatible with the restriction maps F.map i.

  • obj (U : Cᵒᵖ) : Set (F.obj U)

    If G is a sub-presheaf of F, then the sections of G on U forms a subset of sections of F on U.

  • map {U V : Cᵒᵖ} (i : U V) : self.obj U F.map i ⁻¹' self.obj V

    If G is a sub-presheaf of F and i : U ⟶ V, then for each G-sections on U x, F i x is in F(V).

Instances For
    Equations
    • CategoryTheory.GrothendieckTopology.instPartialOrderSubpresheaf = PartialOrder.lift CategoryTheory.GrothendieckTopology.Subpresheaf.obj
    Equations
    • CategoryTheory.GrothendieckTopology.instTopSubpresheaf = { top := { obj := fun (x : Cᵒᵖ) => , map := } }

    The subpresheaf as a presheaf.

    Equations
    • G.toPresheaf = { obj := fun (U : Cᵒᵖ) => (G.obj U), map := fun (x x_1 : Cᵒᵖ) (i : x x_1) (x_2 : (G.obj x)) => F.map i x_2, , map_id := , map_comp := }
    Instances For
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.Subpresheaf.toPresheaf_map_coe {C : Type u} [CategoryTheory.Category.{v, u} C] {F : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.GrothendieckTopology.Subpresheaf F) (x✝ x✝¹ : Cᵒᵖ) (i : x✝ x✝¹) (x : (G.obj x✝)) :
      (G.toPresheaf.map i x) = F.map i x

      The inclusion of a subpresheaf to the original presheaf.

      Equations
      • G = { app := fun (x : Cᵒᵖ) (x_1 : G.toPresheaf.obj x) => x_1, naturality := }
      Instances For

        The inclusion of a subpresheaf to a larger subpresheaf

        Equations
        Instances For
          def CategoryTheory.GrothendieckTopology.Subpresheaf.lift {C : Type u} [CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.GrothendieckTopology.Subpresheaf F) (f : F' F) (hf : ∀ (U : Cᵒᵖ) (x : F'.obj U), f.app U x G.obj U) :
          F' G.toPresheaf

          If the image of a morphism falls in a subpresheaf, then the morphism factors through it.

          Equations
          • G.lift f hf = { app := fun (U : Cᵒᵖ) (x : F'.obj U) => f.app U x, , naturality := }
          Instances For
            @[simp]
            theorem CategoryTheory.GrothendieckTopology.Subpresheaf.lift_app_coe {C : Type u} [CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.GrothendieckTopology.Subpresheaf F) (f : F' F) (hf : ∀ (U : Cᵒᵖ) (x : F'.obj U), f.app U x G.obj U) (U : Cᵒᵖ) (x : F'.obj U) :
            ((G.lift f hf).app U x) = f.app U x

            Given a subpresheaf G of F, an F-section s on U, we may define a sieve of U consisting of all f : V ⟶ U such that the restriction of s along f is in G.

            Equations
            Instances For
              @[simp]

              Given an F-section s on U and a subpresheaf G, we may define a family of elements in G consisting of the restrictions of s

              Equations
              • G.familyOfElementsOfSection s i hi = F.map i.op s, hi
              Instances For
                theorem CategoryTheory.GrothendieckTopology.Subpresheaf.nat_trans_naturality {C : Type u} [CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.GrothendieckTopology.Subpresheaf F) (f : F' G.toPresheaf) {U V : Cᵒᵖ} (i : U V) (x : F'.obj U) :
                (f.app V (F'.map i x)) = F.map i (f.app U x)

                The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole presheaf is a sheaf.

                Equations
                Instances For

                  The lift of a presheaf morphism onto the sheafification subpresheaf.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The image presheaf of a morphism, whose components are the set-theoretic images.

                    Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.GrothendieckTopology.toImagePresheafSheafify_app_coe {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (f : F' F) (X : Cᵒᵖ) (a✝ : F'.obj X) :
                      ((J.toImagePresheafSheafify f).app X a✝) = f.app X a✝

                      The image sheaf of a morphism between sheaves, defined to be the sheafification of image_presheaf.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        A morphism factors through the image sheaf.

                        Equations
                        Instances For

                          The inclusion of the image sheaf to the target.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            The mono factorization given by image_sheaf for a morphism.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              The mono factorization given by image_sheaf for a morphism is an image.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For