Documentation

Mathlib.CategoryTheory.Sites.Subsheaf

Subsheaf of types #

We define the sub(pre)sheaf of a type valued presheaf.

Main results #

The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole presheaf is a sheaf.

Equations
Instances For
    theorem CategoryTheory.Subpresheaf.isSheaf_iff {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (h : Presieve.IsSheaf J F) :
    Presieve.IsSheaf J G.toPresheaf ∀ (U : Cᵒᵖ) (s : F.obj U), G.sieveOfSection s J (Opposite.unop U)s G.obj U
    noncomputable def CategoryTheory.Subpresheaf.sheafifyLift {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : G.toPresheaf F') (h : Presieve.IsSheaf J F') :
    (sheafify J G).toPresheaf F'

    The lift of a presheaf morphism onto the sheafification subpresheaf.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.Subpresheaf.to_sheafifyLift {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : G.toPresheaf F') (h : Presieve.IsSheaf J F') :
      CategoryStruct.comp (homOfLe ) (G.sheafifyLift f h) = f
      theorem CategoryTheory.Subpresheaf.to_sheafify_lift_unique {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (h : Presieve.IsSheaf J F') (l₁ l₂ : (sheafify J G).toPresheaf F') (e : CategoryStruct.comp (homOfLe ) l₁ = CategoryStruct.comp (homOfLe ) l₂) :
      l₁ = l₂
      theorem CategoryTheory.Subpresheaf.sheafify_le {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F : Functor Cᵒᵖ (Type w)} (G G' : Subpresheaf F) (h : G G') (hF : Presieve.IsSheaf J F) (hG' : Presieve.IsSheaf J G'.toPresheaf) :
      sheafify J G G'

      A morphism factors through the sheafification of the image presheaf.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.toImagePresheafSheafify_app_coe {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) (X : Cᵒᵖ) (a✝ : F'.obj X) :
        ((toImagePresheafSheafify J f).app X a✝) = f.app X a✝
        def CategoryTheory.imageSheaf {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

        The image sheaf of a morphism between sheaves, defined to be the sheafification of image_presheaf.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.imageSheaf_val {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :
          (imageSheaf f).val = (Subpresheaf.sheafify J (imagePresheaf f.val)).toPresheaf
          def CategoryTheory.toImageSheaf {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

          A morphism factors through the image sheaf.

          Equations
          Instances For
            @[simp]
            def CategoryTheory.imageSheafι {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

            The inclusion of the image sheaf to the target.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.imageSheafι_val {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :
              noncomputable def CategoryTheory.imageFactorization {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type (max v u))} (f : F F') :

              The mono factorization given by image_sheaf for a morphism is an image.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For