Documentation

Mathlib.CategoryTheory.Sites.Subsheaf

Subsheaf of types #

We define the sub(pre)sheaf of a type valued presheaf.

Main results #

The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole presheaf is a sheaf.

Equations
Instances For

    The lift of a presheaf morphism onto the sheafification subpresheaf.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Subpresheaf.toRangeSheafify_app_coe {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) (X : Cᵒᵖ) (a✝ : F'.obj X) :
      ((toRangeSheafify J f).app X a✝) = ((toRange f).app X a✝)
      def CategoryTheory.Sheaf.image {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

      The image sheaf of a morphism between sheaves, defined to be the sheafification of image_presheaf.

      Equations
      Instances For
        def CategoryTheory.Sheaf.toImage {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

        A morphism factors through the image sheaf.

        Equations
        Instances For
          def CategoryTheory.Sheaf.imageι {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :
          image f F'

          The inclusion of the image sheaf to the target.

          Equations
          Instances For
            @[simp]
            noncomputable def CategoryTheory.imageFactorization {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type (max v u))} (f : F F') :

            The mono factorization given by image_sheaf for a morphism is an image.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[deprecated CategoryTheory.Subpresheaf.toRangeSheafify (since := "2025-01-25")]

              Alias of CategoryTheory.Subpresheaf.toRangeSheafify.


              A morphism factors through the sheafification of the image presheaf.

              Equations
              Instances For
                @[deprecated CategoryTheory.Sheaf.image (since := "2025-01-25")]
                def CategoryTheory.imageSheaf {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

                Alias of CategoryTheory.Sheaf.image.


                The image sheaf of a morphism between sheaves, defined to be the sheafification of image_presheaf.

                Equations
                Instances For
                  @[deprecated CategoryTheory.Sheaf.toImage (since := "2025-01-25")]
                  def CategoryTheory.toImageSheaf {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

                  Alias of CategoryTheory.Sheaf.toImage.


                  A morphism factors through the image sheaf.

                  Equations
                  Instances For
                    @[deprecated CategoryTheory.Sheaf.imageι (since := "2025-01-25")]
                    def CategoryTheory.imageSheafι {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

                    Alias of CategoryTheory.Sheaf.imageι.


                    The inclusion of the image sheaf to the target.

                    Equations
                    Instances For
                      @[deprecated CategoryTheory.Sheaf.toImage_ι (since := "2025-01-25")]

                      Alias of CategoryTheory.Sheaf.toImage_ι.