Documentation

Mathlib.CategoryTheory.SmallObject.Iteration.ExtendToSucc

Extension of a functor from Set.Iic j to Set.Iic (Order.succ j) #

Given a linearly ordered type J with SuccOrder J, j : J that is not maximal, we define the extension of a functor F : Set.Iic j ⥤ C as a functor Set.Iic (Order.succ j) ⥤ C when an object X : C and a morphism τ : F.obj ⟨j, _⟩ ⟶ X is given.

def CategoryTheory.Functor.extendToSucc.obj {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (F : Functor (↑(Set.Iic j)) C) (X : C) (i : (Set.Iic (Order.succ j))) :
C

extendToSucc, on objects: it coincides with F.obj for i ≤ j, and it sends Order.succ j to the given object X.

Equations
Instances For
    def CategoryTheory.Functor.extendToSucc.objIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (F : Functor (↑(Set.Iic j)) C) (X : C) (i : (Set.Iic j)) :
    obj F X i, F.obj i

    The isomorphism obj F X ⟨i, _⟩ ≅ F.obj i when i : Set.Iic j.

    Equations
    Instances For
      def CategoryTheory.Functor.extendToSucc.objSuccIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) (X : C) :
      obj F X Order.succ j, X

      The isomorphism obj F X ⟨Order.succ j, _⟩ ≅ X.

      Equations
      Instances For
        def CategoryTheory.Functor.extendToSucc.map {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ Order.succ j) :
        obj F X i₁, obj F X i₂, hi₂

        extendToSucc, on morphisms.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.Functor.extendToSucc.map_eq {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ j) :
          map hj F τ i₁ i₂ hi = CategoryStruct.comp (objIso F X i₁, ).hom (CategoryStruct.comp (F.map (homOfLE hi)) (objIso F X i₂, hi₂).inv)
          theorem CategoryTheory.Functor.extendToSucc.map_self_succ {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) :
          map hj F τ j (Order.succ j) = CategoryStruct.comp (objIso F X j, ).hom (CategoryStruct.comp τ (objSuccIso hj F X).inv)
          @[simp]
          theorem CategoryTheory.Functor.extendToSucc.map_id {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (i : J) (hi : i Order.succ j) :
          map hj F τ i i hi = CategoryStruct.id (obj F X i, )
          theorem CategoryTheory.Functor.extendToSucc.map_comp {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (i₁ i₂ i₃ : J) (h₁₂ : i₁ i₂) (h₂₃ : i₂ i₃) (h : i₃ Order.succ j) :
          map hj F τ i₁ i₃ h = CategoryStruct.comp (map hj F τ i₁ i₂ h₁₂ ) (map hj F τ i₂ i₃ h₂₃ h)
          def CategoryTheory.Functor.extendToSucc {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) :

          The extension to Set.Iic (Order.succ j) ⥤ C of a functor F : Set.Iic j ⥤ C, when we specify a morphism F.obj ⟨j, _⟩ ⟶ X.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def CategoryTheory.Functor.extendToSuccObjIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (i : (Set.Iic j)) :
            (extendToSucc hj F τ).obj i, F.obj i

            The isomorphism (extendToSucc hj F τ).obj ⟨i, _⟩ ≅ F.obj i when i : Set.Iic j

            Equations
            Instances For
              def CategoryTheory.Functor.extendToSuccObjSuccIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) :
              (extendToSucc hj F τ).obj Order.succ j, X

              The isomorphism (extendToSucc hj F τ).obj ⟨Order.succ j, _⟩ ≅ X.

              Equations
              Instances For
                theorem CategoryTheory.Functor.extendToSuccObjIso_hom_naturality {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ j) :
                CategoryStruct.comp ((extendToSucc hj F τ).map (homOfLE hi)) (extendToSuccObjIso hj F τ i₂, hi₂).hom = CategoryStruct.comp (extendToSuccObjIso hj F τ i₁, ).hom (F.map (homOfLE hi))
                theorem CategoryTheory.Functor.extendToSuccObjIso_hom_naturality_assoc {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ j) {Z : C} (h : F.obj i₂, hi₂ Z) :
                CategoryStruct.comp ((extendToSucc hj F τ).map (homOfLE hi)) (CategoryStruct.comp (extendToSuccObjIso hj F τ i₂, hi₂).hom h) = CategoryStruct.comp (extendToSuccObjIso hj F τ i₁, ).hom (CategoryStruct.comp (F.map (homOfLE hi)) h)
                def CategoryTheory.Functor.extendToSuccRestrictionLEIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) :

                The isomorphism expressing that extendToSucc hj F τ extends F.

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Functor.extendToSuccRestrictionLEIso_hom_app {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (X✝ : (Set.Iic j)) :
                  (extendToSuccRestrictionLEIso hj F τ).hom.app X✝ = (extendToSuccObjIso hj F τ X✝).hom
                  @[simp]
                  theorem CategoryTheory.Functor.extendToSuccRestrictionLEIso_inv_app {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (X✝ : (Set.Iic j)) :
                  (extendToSuccRestrictionLEIso hj F τ).inv.app X✝ = (extendToSuccObjIso hj F τ X✝).inv
                  theorem CategoryTheory.Functor.extentToSucc_map {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ j) :
                  (extendToSucc hj F τ).map (homOfLE hi) = CategoryStruct.comp (extendToSuccObjIso hj F τ i₁, ).hom (CategoryStruct.comp (F.map (homOfLE hi)) (extendToSuccObjIso hj F τ i₂, hi₂).inv)
                  theorem CategoryTheory.Functor.extendToSucc_map_le_succ {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] [SuccOrder J] {j : J} (hj : ¬IsMax j) (F : Functor (↑(Set.Iic j)) C) {X : C} (τ : F.obj j, X) :
                  (extendToSucc hj F τ).map (homOfLE ) = CategoryStruct.comp (extendToSuccObjIso hj F τ j, ).hom (CategoryStruct.comp τ (extendToSuccObjSuccIso hj F τ).inv)