Documentation

Mathlib.CategoryTheory.Square

The category of commutative squares #

In this file, we define a bundled version of CommSq which allows to consider commutative squares as objects in a category Square C.

The four objects in a commutative square are numbered as follows:

X₁ --> X₂
|      |
v      v
X₃ --> X₄

We define the flip functor, and two equivalences with the category Arrow (Arrow C), depending on whether we consider a commutative square as a horizontal morphism between two vertical maps (arrowArrowEquivalence) or a vertical morphism between two horizontal maps (arrowArrowEquivalence').

structure CategoryTheory.Square (C : Type u) [Category.{v, u} C] :
Type (max u v)

The category of commutative squares in a category.

  • X₁ : C

    the top-left object

  • X₂ : C

    the top-right object

  • X₃ : C

    the bottom-left object

  • X₄ : C

    the bottom-right object

  • f₁₂ : self.X₁ self.X₂

    the top morphism

  • f₁₃ : self.X₁ self.X₃

    the left morphism

  • f₂₄ : self.X₂ self.X₄

    the right morphism

  • f₃₄ : self.X₃ self.X₄

    the bottom morphism

  • fac : CategoryStruct.comp self.f₁₂ self.f₂₄ = CategoryStruct.comp self.f₁₃ self.f₃₄
Instances For
    theorem CategoryTheory.Square.commSq {C : Type u} [Category.{v, u} C] (sq : Square C) :
    CommSq sq.f₁₂ sq.f₁₃ sq.f₂₄ sq.f₃₄
    structure CategoryTheory.Square.Hom {C : Type u} [Category.{v, u} C] (sq₁ sq₂ : Square C) :

    A morphism between two commutative squares consists of 4 morphisms which extend these two squares into a commuting cube.

    Instances For
      theorem CategoryTheory.Square.Hom.ext {C : Type u} {inst✝ : Category.{v, u} C} {sq₁ sq₂ : Square C} {x y : sq₁.Hom sq₂} (τ₁ : x.τ₁ = y.τ₁) (τ₂ : x.τ₂ = y.τ₂) (τ₃ : x.τ₃ = y.τ₃) (τ₄ : x.τ₄ = y.τ₄) :
      x = y
      @[simp]
      theorem CategoryTheory.Square.Hom.comm₁₃_assoc {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (self : sq₁.Hom sq₂) {Z : C} (h : sq₂.X₃ Z) :
      CategoryStruct.comp sq₁.f₁₃ (CategoryStruct.comp self.τ₃ h) = CategoryStruct.comp self.τ₁ (CategoryStruct.comp sq₂.f₁₃ h)
      @[simp]
      theorem CategoryTheory.Square.Hom.comm₁₂_assoc {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (self : sq₁.Hom sq₂) {Z : C} (h : sq₂.X₂ Z) :
      CategoryStruct.comp sq₁.f₁₂ (CategoryStruct.comp self.τ₂ h) = CategoryStruct.comp self.τ₁ (CategoryStruct.comp sq₂.f₁₂ h)
      @[simp]
      theorem CategoryTheory.Square.Hom.comm₃₄_assoc {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (self : sq₁.Hom sq₂) {Z : C} (h : sq₂.X₄ Z) :
      CategoryStruct.comp sq₁.f₃₄ (CategoryStruct.comp self.τ₄ h) = CategoryStruct.comp self.τ₃ (CategoryStruct.comp sq₂.f₃₄ h)
      @[simp]
      theorem CategoryTheory.Square.Hom.comm₂₄_assoc {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (self : sq₁.Hom sq₂) {Z : C} (h : sq₂.X₄ Z) :
      CategoryStruct.comp sq₁.f₂₄ (CategoryStruct.comp self.τ₄ h) = CategoryStruct.comp self.τ₂ (CategoryStruct.comp sq₂.f₂₄ h)
      def CategoryTheory.Square.Hom.id {C : Type u} [Category.{v, u} C] (sq : Square C) :
      sq.Hom sq

      The identity of a commutative square.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Square.Hom.id_τ₁ {C : Type u} [Category.{v, u} C] (sq : Square C) :
        (id sq).τ₁ = CategoryStruct.id sq.X₁
        @[simp]
        theorem CategoryTheory.Square.Hom.id_τ₃ {C : Type u} [Category.{v, u} C] (sq : Square C) :
        (id sq).τ₃ = CategoryStruct.id sq.X₃
        @[simp]
        theorem CategoryTheory.Square.Hom.id_τ₄ {C : Type u} [Category.{v, u} C] (sq : Square C) :
        (id sq).τ₄ = CategoryStruct.id sq.X₄
        @[simp]
        theorem CategoryTheory.Square.Hom.id_τ₂ {C : Type u} [Category.{v, u} C] (sq : Square C) :
        (id sq).τ₂ = CategoryStruct.id sq.X₂
        def CategoryTheory.Square.Hom.comp {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
        sq₁.Hom sq₃

        The composition of morphisms of squares.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Square.Hom.comp_τ₂ {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
          (f.comp g).τ₂ = CategoryStruct.comp f.τ₂ g.τ₂
          @[simp]
          theorem CategoryTheory.Square.Hom.comp_τ₁ {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
          (f.comp g).τ₁ = CategoryStruct.comp f.τ₁ g.τ₁
          @[simp]
          theorem CategoryTheory.Square.Hom.comp_τ₃ {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
          (f.comp g).τ₃ = CategoryStruct.comp f.τ₃ g.τ₃
          @[simp]
          theorem CategoryTheory.Square.Hom.comp_τ₄ {C : Type u} [Category.{v, u} C] {sq₁ sq₂ sq₃ : Square C} (f : sq₁.Hom sq₂) (g : sq₂.Hom sq₃) :
          (f.comp g).τ₄ = CategoryStruct.comp f.τ₄ g.τ₄
          @[simp]
          theorem CategoryTheory.Square.category_comp_τ₄ {C : Type u} [Category.{v, u} C] {X✝ Y✝ Z✝ : Square C} (f : X✝.Hom Y✝) (g : Y✝.Hom Z✝) :
          (CategoryStruct.comp f g).τ₄ = CategoryStruct.comp f.τ₄ g.τ₄
          @[simp]
          theorem CategoryTheory.Square.category_comp_τ₁ {C : Type u} [Category.{v, u} C] {X✝ Y✝ Z✝ : Square C} (f : X✝.Hom Y✝) (g : Y✝.Hom Z✝) :
          (CategoryStruct.comp f g).τ₁ = CategoryStruct.comp f.τ₁ g.τ₁
          @[simp]
          theorem CategoryTheory.Square.category_comp_τ₂ {C : Type u} [Category.{v, u} C] {X✝ Y✝ Z✝ : Square C} (f : X✝.Hom Y✝) (g : Y✝.Hom Z✝) :
          (CategoryStruct.comp f g).τ₂ = CategoryStruct.comp f.τ₂ g.τ₂
          @[simp]
          theorem CategoryTheory.Square.category_comp_τ₃ {C : Type u} [Category.{v, u} C] {X✝ Y✝ Z✝ : Square C} (f : X✝.Hom Y✝) (g : Y✝.Hom Z✝) :
          (CategoryStruct.comp f g).τ₃ = CategoryStruct.comp f.τ₃ g.τ₃
          theorem CategoryTheory.Square.hom_ext {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} {f g : sq₁ sq₂} (h₁ : f.τ₁ = g.τ₁) (h₂ : f.τ₂ = g.τ₂) (h₃ : f.τ₃ = g.τ₃) (h₄ : f.τ₄ = g.τ₄) :
          f = g
          def CategoryTheory.Square.isoMk {C : Type u} [Category.{v, u} C] {sq₁ sq₂ : Square C} (e₁ : sq₁.X₁ sq₂.X₁) (e₂ : sq₁.X₂ sq₂.X₂) (e₃ : sq₁.X₃ sq₂.X₃) (e₄ : sq₁.X₄ sq₂.X₄) (comm₁₂ : CategoryStruct.comp sq₁.f₁₂ e₂.hom = CategoryStruct.comp e₁.hom sq₂.f₁₂) (comm₁₃ : CategoryStruct.comp sq₁.f₁₃ e₃.hom = CategoryStruct.comp e₁.hom sq₂.f₁₃) (comm₂₄ : CategoryStruct.comp sq₁.f₂₄ e₄.hom = CategoryStruct.comp e₂.hom sq₂.f₂₄) (comm₃₄ : CategoryStruct.comp sq₁.f₃₄ e₄.hom = CategoryStruct.comp e₃.hom sq₂.f₃₄) :
          sq₁ sq₂

          Constructor for isomorphisms in Square c

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Flipping a square by switching the top-right and the bottom-left objects.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Square.flip_X₂ {C : Type u} [Category.{v, u} C] (sq : Square C) :
              sq.flip.X₂ = sq.X₃
              @[simp]
              theorem CategoryTheory.Square.flip_X₁ {C : Type u} [Category.{v, u} C] (sq : Square C) :
              sq.flip.X₁ = sq.X₁
              @[simp]
              theorem CategoryTheory.Square.flip_f₁₂ {C : Type u} [Category.{v, u} C] (sq : Square C) :
              sq.flip.f₁₂ = sq.f₁₃
              @[simp]
              theorem CategoryTheory.Square.flip_f₃₄ {C : Type u} [Category.{v, u} C] (sq : Square C) :
              sq.flip.f₃₄ = sq.f₂₄
              @[simp]
              theorem CategoryTheory.Square.flip_f₂₄ {C : Type u} [Category.{v, u} C] (sq : Square C) :
              sq.flip.f₂₄ = sq.f₃₄
              @[simp]
              theorem CategoryTheory.Square.flip_f₁₃ {C : Type u} [Category.{v, u} C] (sq : Square C) :
              sq.flip.f₁₃ = sq.f₁₂
              @[simp]
              theorem CategoryTheory.Square.flip_X₃ {C : Type u} [Category.{v, u} C] (sq : Square C) :
              sq.flip.X₃ = sq.X₂
              @[simp]
              theorem CategoryTheory.Square.flip_X₄ {C : Type u} [Category.{v, u} C] (sq : Square C) :
              sq.flip.X₄ = sq.X₄

              The functor which flips commutative squares.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_obj {C : Type u} [Category.{v, u} C] (sq : Square C) :
                flipFunctor.obj sq = sq.flip
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_map_τ₂ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                (flipFunctor.map φ).τ₂ = φ.τ₃
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_map_τ₁ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                (flipFunctor.map φ).τ₁ = φ.τ₁
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_map_τ₃ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                (flipFunctor.map φ).τ₃ = φ.τ₂
                @[simp]
                theorem CategoryTheory.Square.flipFunctor_map_τ₄ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                (flipFunctor.map φ).τ₄ = φ.τ₄

                Flipping commutative squares is an auto-equivalence.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The functor Square C ⥤ Arrow (Arrow C) which sends a commutative square sq to the obvious arrow from the left morphism of sq to the right morphism of sq.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    @[simp]
                    theorem CategoryTheory.Square.toArrowArrowFunctor_map_right_left {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                    (toArrowArrowFunctor.map φ).right.left = φ.τ₂
                    @[simp]
                    theorem CategoryTheory.Square.toArrowArrowFunctor_map_left_left {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                    (toArrowArrowFunctor.map φ).left.left = φ.τ₁
                    @[simp]
                    @[simp]
                    @[simp]
                    @[simp]
                    @[simp]
                    theorem CategoryTheory.Square.toArrowArrowFunctor_map_right_right {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                    (toArrowArrowFunctor.map φ).right.right = φ.τ₄
                    @[simp]
                    theorem CategoryTheory.Square.toArrowArrowFunctor_map_left_right {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                    (toArrowArrowFunctor.map φ).left.right = φ.τ₃

                    The functor Arrow (Arrow C) ⥤ Square C which sends a morphism Arrow.mk f ⟶ Arrow.mk g to the commutative square with f on the left side and g on the right side.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Arrow (Arrow C)} (φ : X✝ Y✝) :
                      (fromArrowArrowFunctor.map φ).τ₃ = φ.left.right
                      @[simp]
                      theorem CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Arrow (Arrow C)} (φ : X✝ Y✝) :
                      (fromArrowArrowFunctor.map φ).τ₄ = φ.right.right
                      @[simp]
                      theorem CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Arrow (Arrow C)} (φ : X✝ Y✝) :
                      (fromArrowArrowFunctor.map φ).τ₂ = φ.right.left
                      @[simp]
                      theorem CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Arrow (Arrow C)} (φ : X✝ Y✝) :
                      (fromArrowArrowFunctor.map φ).τ₁ = φ.left.left

                      The equivalence Square C ≌ Arrow (Arrow C) which sends a commutative square sq to the obvious arrow from the left morphism of sq to the right morphism of sq.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        The functor Square C ⥤ Arrow (Arrow C) which sends a commutative square sq to the obvious arrow from the top morphism of sq to the bottom morphism of sq.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          @[simp]
                          @[simp]
                          theorem CategoryTheory.Square.toArrowArrowFunctor'_map_left_right {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                          (toArrowArrowFunctor'.map φ).left.right = φ.τ₂
                          @[simp]
                          theorem CategoryTheory.Square.toArrowArrowFunctor'_map_left_left {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                          (toArrowArrowFunctor'.map φ).left.left = φ.τ₁
                          @[simp]
                          @[simp]
                          theorem CategoryTheory.Square.toArrowArrowFunctor'_map_right_left {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                          (toArrowArrowFunctor'.map φ).right.left = φ.τ₃
                          @[simp]
                          @[simp]
                          theorem CategoryTheory.Square.toArrowArrowFunctor'_map_right_right {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                          (toArrowArrowFunctor'.map φ).right.right = φ.τ₄

                          The functor Arrow (Arrow C) ⥤ Square C which sends a morphism Arrow.mk f ⟶ Arrow.mk g to the commutative square with f on the top side and g on the bottom side.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Arrow (Arrow C)} (φ : X✝ Y✝) :
                            (fromArrowArrowFunctor'.map φ).τ₁ = φ.left.left
                            @[simp]
                            theorem CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Arrow (Arrow C)} (φ : X✝ Y✝) :
                            (fromArrowArrowFunctor'.map φ).τ₄ = φ.right.right
                            @[simp]
                            theorem CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Arrow (Arrow C)} (φ : X✝ Y✝) :
                            (fromArrowArrowFunctor'.map φ).τ₂ = φ.left.right
                            @[simp]
                            theorem CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Arrow (Arrow C)} (φ : X✝ Y✝) :
                            (fromArrowArrowFunctor'.map φ).τ₃ = φ.right.left

                            The equivalence Square C ≌ Arrow (Arrow C) which sends a commutative square sq to the obvious arrow from the top morphism of sq to the bottom morphism of sq.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              The top-left evaluation Square C ⥤ C.

                              Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Square.evaluation₁_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                evaluation₁.map φ = φ.τ₁
                                @[simp]

                                The top-right evaluation Square C ⥤ C.

                                Equations
                                Instances For
                                  @[simp]
                                  @[simp]
                                  theorem CategoryTheory.Square.evaluation₂_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                  evaluation₂.map φ = φ.τ₂

                                  The bottom-left evaluation Square C ⥤ C.

                                  Equations
                                  Instances For
                                    @[simp]
                                    @[simp]
                                    theorem CategoryTheory.Square.evaluation₃_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                    evaluation₃.map φ = φ.τ₃

                                    The bottom-right evaluation Square C ⥤ C.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.Square.evaluation₄_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                      evaluation₄.map φ = φ.τ₄
                                      @[simp]

                                      The map Square C → Square Cᵒᵖ which switches X₁ and X₃, but does not move X₂ and X₃.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem CategoryTheory.Square.op_f₃₄ {C : Type u} [Category.{v, u} C] (sq : Square C) :
                                        sq.op.f₃₄ = sq.f₁₃.op
                                        @[simp]
                                        theorem CategoryTheory.Square.op_X₃ {C : Type u} [Category.{v, u} C] (sq : Square C) :
                                        sq.op.X₃ = Opposite.op sq.X₃
                                        @[simp]
                                        theorem CategoryTheory.Square.op_f₂₄ {C : Type u} [Category.{v, u} C] (sq : Square C) :
                                        sq.op.f₂₄ = sq.f₁₂.op
                                        @[simp]
                                        theorem CategoryTheory.Square.op_X₄ {C : Type u} [Category.{v, u} C] (sq : Square C) :
                                        sq.op.X₄ = Opposite.op sq.X₁
                                        @[simp]
                                        theorem CategoryTheory.Square.op_X₂ {C : Type u} [Category.{v, u} C] (sq : Square C) :
                                        sq.op.X₂ = Opposite.op sq.X₂
                                        @[simp]
                                        theorem CategoryTheory.Square.op_X₁ {C : Type u} [Category.{v, u} C] (sq : Square C) :
                                        sq.op.X₁ = Opposite.op sq.X₄
                                        @[simp]
                                        theorem CategoryTheory.Square.op_f₁₃ {C : Type u} [Category.{v, u} C] (sq : Square C) :
                                        sq.op.f₁₃ = sq.f₃₄.op
                                        @[simp]
                                        theorem CategoryTheory.Square.op_f₁₂ {C : Type u} [Category.{v, u} C] (sq : Square C) :
                                        sq.op.f₁₂ = sq.f₂₄.op

                                        The map Square Cᵒᵖ → Square C which switches X₁ and X₃, but does not move X₂ and X₃.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Square.unop_f₁₂ {C : Type u} [Category.{v, u} C] (sq : Square Cᵒᵖ) :
                                          sq.unop.f₁₂ = sq.f₂₄.unop
                                          @[simp]
                                          theorem CategoryTheory.Square.unop_X₂ {C : Type u} [Category.{v, u} C] (sq : Square Cᵒᵖ) :
                                          sq.unop.X₂ = Opposite.unop sq.X₂
                                          @[simp]
                                          theorem CategoryTheory.Square.unop_X₄ {C : Type u} [Category.{v, u} C] (sq : Square Cᵒᵖ) :
                                          sq.unop.X₄ = Opposite.unop sq.X₁
                                          @[simp]
                                          theorem CategoryTheory.Square.unop_f₂₄ {C : Type u} [Category.{v, u} C] (sq : Square Cᵒᵖ) :
                                          sq.unop.f₂₄ = sq.f₁₂.unop
                                          @[simp]
                                          theorem CategoryTheory.Square.unop_X₁ {C : Type u} [Category.{v, u} C] (sq : Square Cᵒᵖ) :
                                          sq.unop.X₁ = Opposite.unop sq.X₄
                                          @[simp]
                                          theorem CategoryTheory.Square.unop_f₃₄ {C : Type u} [Category.{v, u} C] (sq : Square Cᵒᵖ) :
                                          sq.unop.f₃₄ = sq.f₁₃.unop
                                          @[simp]
                                          theorem CategoryTheory.Square.unop_f₁₃ {C : Type u} [Category.{v, u} C] (sq : Square Cᵒᵖ) :
                                          sq.unop.f₁₃ = sq.f₃₄.unop
                                          @[simp]
                                          theorem CategoryTheory.Square.unop_X₃ {C : Type u} [Category.{v, u} C] (sq : Square Cᵒᵖ) :
                                          sq.unop.X₃ = Opposite.unop sq.X₃

                                          The functor (Square C)ᵒᵖ ⥤ Square Cᵒᵖ.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Square.opFunctor_map_τ₂ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : (Square C)ᵒᵖ} (φ : X✝ Y✝) :
                                            (opFunctor.map φ).τ₂ = φ.unop.τ₂.op
                                            @[simp]
                                            theorem CategoryTheory.Square.opFunctor_map_τ₄ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : (Square C)ᵒᵖ} (φ : X✝ Y✝) :
                                            (opFunctor.map φ).τ₄ = φ.unop.τ₁.op
                                            @[simp]
                                            theorem CategoryTheory.Square.opFunctor_map_τ₃ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : (Square C)ᵒᵖ} (φ : X✝ Y✝) :
                                            (opFunctor.map φ).τ₃ = φ.unop.τ₃.op
                                            @[simp]
                                            theorem CategoryTheory.Square.opFunctor_map_τ₁ {C : Type u} [Category.{v, u} C] {X✝ Y✝ : (Square C)ᵒᵖ} (φ : X✝ Y✝) :
                                            (opFunctor.map φ).τ₁ = φ.unop.τ₄.op

                                            The functor (Square Cᵒᵖ)ᵒᵖ ⥤ Square Cᵒᵖ.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              The equivalence (Square C)ᵒᵖ ≌ Square Cᵒᵖ.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                def CategoryTheory.Square.map {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :

                                                The image of a commutative square by a functor.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_f₂₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).f₂₄ = F.map sq.f₂₄
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_X₂ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).X₂ = F.obj sq.X₂
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_f₁₂ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).f₁₂ = F.map sq.f₁₂
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_X₁ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).X₁ = F.obj sq.X₁
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_X₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).X₄ = F.obj sq.X₄
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_f₃₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).f₃₄ = F.map sq.f₃₄
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_X₃ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).X₃ = F.obj sq.X₃
                                                  @[simp]
                                                  theorem CategoryTheory.Square.map_f₁₃ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (sq : Square C) (F : Functor C D) :
                                                  (sq.map F).f₁₃ = F.map sq.f₁₃

                                                  The functor Square C ⥤ Square D induced by a functor C ⥤ D.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_map_τ₁ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                                    (F.mapSquare.map φ).τ₁ = F.map φ.τ₁
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_map_τ₃ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                                    (F.mapSquare.map φ).τ₃ = F.map φ.τ₃
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_map_τ₂ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                                    (F.mapSquare.map φ).τ₂ = F.map φ.τ₂
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_map_τ₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) {X✝ Y✝ : Square C} (φ : X✝ Y✝) :
                                                    (F.mapSquare.map φ).τ₄ = F.map φ.τ₄
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapSquare_obj {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) (sq : Square C) :
                                                    F.mapSquare.obj sq = sq.map F
                                                    def CategoryTheory.NatTrans.mapSquare {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) :
                                                    F.mapSquare G.mapSquare

                                                    The natural transformation F.mapSquare ⟶ G.mapSquare induces by a natural transformation F ⟶ G.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.NatTrans.mapSquare_app_τ₂ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) (sq : Square C) :
                                                      ((mapSquare τ).app sq).τ₂ = τ.app sq.X₂
                                                      @[simp]
                                                      theorem CategoryTheory.NatTrans.mapSquare_app_τ₃ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) (sq : Square C) :
                                                      ((mapSquare τ).app sq).τ₃ = τ.app sq.X₃
                                                      @[simp]
                                                      theorem CategoryTheory.NatTrans.mapSquare_app_τ₁ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) (sq : Square C) :
                                                      ((mapSquare τ).app sq).τ₁ = τ.app sq.X₁
                                                      @[simp]
                                                      theorem CategoryTheory.NatTrans.mapSquare_app_τ₄ {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {F G : Functor C D} (τ : F G) (sq : Square C) :
                                                      ((mapSquare τ).app sq).τ₄ = τ.app sq.X₄

                                                      The functor (C ⥤ D) ⥤ Square C ⥤ Square D.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.Square.mapFunctor_obj {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) :
                                                        mapFunctor.obj F = F.mapSquare
                                                        @[simp]
                                                        theorem CategoryTheory.Square.mapFunctor_map {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) :