Subfunctor of types #
We define subfunctors of a type-valued functors.
Main definition #
CategoryTheory.Subfunctor : A subfunctor of a type-valued functor.
A subfunctor of a functor consists of a subset of F.obj U for every U,
compatible with the restriction maps F.map i.
If
Gis a subfunctor ofF, then the sections ofGonUforms a subset of sections ofFonU.If
Gis a subfunctor ofFandi : U ⟶ V, then for eachG-sections onUx,F i xis inF(V).
Instances For
Alias of CategoryTheory.Subfunctor.
A subfunctor of a functor consists of a subset of F.obj U for every U,
compatible with the restriction maps F.map i.
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
The subfunctor as a functor.
Equations
Instances For
Equations
- G.instCoeHeadObjToFunctor = { coe := Subtype.val }
The inclusion of a subfunctor to the original functor.
Instances For
The inclusion of a subfunctor to a larger subfunctor
Equations
Instances For
Alias of CategoryTheory.Subfunctor.le_def.
Alias of CategoryTheory.Subfunctor.top_obj.
Alias of CategoryTheory.Subfunctor.bot_obj.
Alias of CategoryTheory.Subfunctor.sSup_obj.
Alias of CategoryTheory.Subfunctor.sInf_obj.
Alias of CategoryTheory.Subfunctor.iSup_obj.
Alias of CategoryTheory.Subfunctor.iInf_obj.
Alias of CategoryTheory.Subfunctor.max_obj.
Alias of CategoryTheory.Subfunctor.min_obj.
Alias of CategoryTheory.Subfunctor.max_min.
Alias of CategoryTheory.Subfunctor.iSup_min.
Alias of CategoryTheory.Subfunctor.toFunctor.
The subfunctor as a functor.
Instances For
Alias of CategoryTheory.Subfunctor.ι.
The inclusion of a subfunctor to the original functor.
Instances For
Alias of CategoryTheory.Subfunctor.homOfLe.
The inclusion of a subfunctor to a larger subfunctor
Instances For
Alias of CategoryTheory.Subfunctor.homOfLe_ι.
Alias of CategoryTheory.Subfunctor.toFunctor.
The subfunctor as a functor.
Instances For
Alias of CategoryTheory.Subfunctor.toFunctor_obj.