Documentation

Mathlib.CategoryTheory.Subfunctor.Sieves

Sieves attached to subpresheaves #

Given a subpresheaf G of a presheaf of types F : Cᵒᵖ ⥤ Type w and a section s : F.obj U, we define a sieve G.sieveOfSection s : Sieve (unop U) and the associated compatible family of elements with values in G.toFunctor.

Given a subpresheaf G of F, an F-section s on U, we may define a sieve of U consisting of all f : V ⟶ U such that the restriction of s along f is in G.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Subfunctor.sieveOfSection_apply {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} (G : Subfunctor F) {U : Cᵒᵖ} (s : F.obj U) (V : C) (f : V Opposite.unop U) :
    (G.sieveOfSection s).arrows f = (F.map f.op s G.obj (Opposite.op V))

    Given an F-section s on U and a subpresheaf G, we may define a family of elements in G consisting of the restrictions of s

    Equations
    Instances For
      @[deprecated CategoryTheory.Subfunctor.sieveOfSection (since := "2025-12-11")]

      Alias of CategoryTheory.Subfunctor.sieveOfSection.


      Given a subpresheaf G of F, an F-section s on U, we may define a sieve of U consisting of all f : V ⟶ U such that the restriction of s along f is in G.

      Equations
      Instances For
        @[deprecated CategoryTheory.Subfunctor.familyOfElementsOfSection (since := "2025-12-11")]

        Alias of CategoryTheory.Subfunctor.familyOfElementsOfSection.


        Given an F-section s on U and a subpresheaf G, we may define a family of elements in G consisting of the restrictions of s

        Equations
        Instances For
          @[deprecated CategoryTheory.Subfunctor.family_of_elements_compatible (since := "2025-12-11")]

          Alias of CategoryTheory.Subfunctor.family_of_elements_compatible.