Associator for binary disjoint union of categories. #
The associator functor ((C ⊕ D) ⊕ E) ⥤ (C ⊕ (D ⊕ E))
and its inverse form an equivalence.
def
CategoryTheory.sum.associator
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
:
The associator functor (C ⊕ D) ⊕ E ⥤ C ⊕ (D ⊕ E)
for sums of categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.sum.associator_obj_inl_inl
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
(X : C)
:
(associator C D E).obj (Sum.inl (Sum.inl X)) = Sum.inl X
@[simp]
theorem
CategoryTheory.sum.associator_obj_inl_inr
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
(X : D)
:
@[simp]
theorem
CategoryTheory.sum.associator_obj_inr
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
(X : E)
:
(associator C D E).obj (Sum.inr X) = Sum.inr (Sum.inr X)
@[simp]
theorem
CategoryTheory.sum.associator_map_inl_inl
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
{X Y : C}
(f : Sum.inl (Sum.inl X) ⟶ Sum.inl (Sum.inl Y))
:
(associator C D E).map f = f
@[simp]
theorem
CategoryTheory.sum.associator_map_inl_inr
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
{X Y : D}
(f : Sum.inl (Sum.inr X) ⟶ Sum.inl (Sum.inr Y))
:
(associator C D E).map f = f
@[simp]
theorem
CategoryTheory.sum.associator_map_inr
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
{X Y : E}
(f : Sum.inr X ⟶ Sum.inr Y)
:
(associator C D E).map f = f
def
CategoryTheory.sum.inverseAssociator
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
:
The inverse associator functor C ⊕ (D ⊕ E) ⥤ (C ⊕ D) ⊕ E
for sums of categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.sum.inverseAssociator_obj_inl
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
(X : C)
:
(inverseAssociator C D E).obj (Sum.inl X) = Sum.inl (Sum.inl X)
@[simp]
theorem
CategoryTheory.sum.inverseAssociator_obj_inr_inl
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
(X : D)
:
@[simp]
theorem
CategoryTheory.sum.inverseAssociator_obj_inr_inr
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
(X : E)
:
(inverseAssociator C D E).obj (Sum.inr (Sum.inr X)) = Sum.inr X
@[simp]
theorem
CategoryTheory.sum.inverseAssociator_map_inl
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
{X Y : C}
(f : Sum.inl X ⟶ Sum.inl Y)
:
(inverseAssociator C D E).map f = f
@[simp]
theorem
CategoryTheory.sum.inverseAssociator_map_inr_inl
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
{X Y : D}
(f : Sum.inr (Sum.inl X) ⟶ Sum.inr (Sum.inl Y))
:
(inverseAssociator C D E).map f = f
@[simp]
theorem
CategoryTheory.sum.inverseAssociator_map_inr_inr
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
{X Y : E}
(f : Sum.inr (Sum.inr X) ⟶ Sum.inr (Sum.inr Y))
:
(inverseAssociator C D E).map f = f
def
CategoryTheory.sum.associativity
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
:
The equivalence of categories expressing associativity of sums of categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.sum.associativity_inverse
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
:
(associativity C D E).inverse = inverseAssociator C D E
@[simp]
theorem
CategoryTheory.sum.associativity_functor
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
:
(associativity C D E).functor = associator C D E
instance
CategoryTheory.sum.associatorIsEquivalence
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
:
(associator C D E).IsEquivalence
instance
CategoryTheory.sum.inverseAssociatorIsEquivalence
(C : Type u)
[Category.{v, u} C]
(D : Type u)
[Category.{v, u} D]
(E : Type u)
[Category.{v, u} E]
:
(inverseAssociator C D E).IsEquivalence