Documentation

Mathlib.Combinatorics.SimpleGraph.VertexCover

Vertex cover #

A vertex cover of a simple graph is a set of vertices such that every edge is incident to at least one of the vertices in the set.

Main definitions #

def SimpleGraph.IsVertexCover {V : Type u_1} (G : SimpleGraph V) (c : Set V) :

c is a vertex cover of G if every edge in G is incident to at least one vertex in c.

Equations
Instances For
    @[simp]
    theorem SimpleGraph.IsVertexCover.subset {V : Type u_1} {G : SimpleGraph V} {c d : Set V} (hcd : c d) (hc : G.IsVertexCover c) :
    theorem SimpleGraph.IsVertexCover.mono {V : Type u_1} {G G' : SimpleGraph V} {c : Set V} (hG : G G') (hc : G'.IsVertexCover c) :
    @[simp]

    A set c is a vertex cover iff the complement of c is an independent set.

    @[simp]
    theorem SimpleGraph.IsVertexCover.preimage {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {H : SimpleGraph W} {F : Type u_3} [FunLike F V W] [HomClass F G H] (f : F) {c : Set W} (hc : H.IsVertexCover c) :
    @[simp]
    theorem SimpleGraph.isVertexCover_preimage_iso {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {H : SimpleGraph W} (f : G ≃g H) {c : Set W} :
    @[simp]
    theorem SimpleGraph.isVertexCover_image_iso {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {H : SimpleGraph W} (f : G ≃g H) {c : Set V} :
    noncomputable def SimpleGraph.vertexCoverNum {V : Type u_1} (G : SimpleGraph V) :

    The vertex cover number of G is the minimal number of vertices in a vertex cover of G.

    Equations
    Instances For
      theorem SimpleGraph.vertexCoverNum_le_iff {V : Type u_1} {G : SimpleGraph V} {n : ℕ∞} :
      G.vertexCoverNum n ∀ (m : ℕ∞), (∀ (s : Set V), G.IsVertexCover sm s.encard)m n
      theorem SimpleGraph.exists_of_le_vertexCoverNum {V : Type u_1} {G : SimpleGraph V} (n : ) (h₁ : G.vertexCoverNum n) (h₂ : n ENat.card V) :
      ∃ (s : Set V), s.encard = n G.IsVertexCover s
      @[deprecated SimpleGraph.IsContained.vertexCoverNum_le_vertexCoverNum (since := "2026-01-07")]