Functors from categories of topological spaces to light condensed sets #
This file defines the embedding of the test objects (light profinite sets) into light condensed sets.
Main definitions #
lightProfiniteToLightCondSet : LightProfinite.{u} ⥤ LightCondSet.{u}is the yoneda sheaf functor.
The functor from LightProfinite.{u} to LightCondSet.{u} given by the Yoneda sheaf.
Instances For
@[reducible, inline]
Dot notation for the value of lightProfiniteToLightCondSet.
Equations
Instances For
The functor from LightProfinite to LightCondSet factors through TopCat.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom
(X : LightProfinite)
(X✝ : LightProfiniteᵒᵖ)
(a✝ :
((CategoryTheory.sheafToPresheaf (CategoryTheory.coherentTopology LightProfinite) (Type u)).obj
((LightProfinite.toTopCat.comp topCatToLightCondSet).obj X)).obj
X✝)
:
@[simp]
theorem
lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply
(X : LightProfinite)
(X✝ : LightProfiniteᵒᵖ)
(a✝ :
((CategoryTheory.sheafToPresheaf (CategoryTheory.coherentTopology LightProfinite) (Type u)).obj
(lightProfiniteToLightCondSet.obj X)).obj
X✝)
(a : ↑(Opposite.unop X✝).toTop)
:
((lightProfiniteToLightCondSetIsoTopCatToLightCondSet.hom.app X).val.app X✝ a✝) a = (TopCat.Hom.hom a✝) a
instance
instPreservesLimitsOfShapeLightProfiniteLightCondSetLightProfiniteToLightCondSetOfCountableCategory
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.CountableCategory J]
:
The functor from LightProfinite to LightCondSet preserves countable limits.
The functor from LightProfinite to LightCondSet preserves finite limits.
The functor from LightProfinite to LightCondSet is monoidal with respect to the cartesian
monoidal structure.