Functors from categories of topological spaces to light condensed sets #
This file defines the embedding of the test objects (light profinite sets) into light condensed sets.
Main definitions #
lightProfiniteToLightCondSet : LightProfinite.{u} ⥤ LightCondSet.{u}is the yoneda sheaf functor.
The functor from LightProfinite.{u} to LightCondSet.{u} given by the Yoneda sheaf.
Instances For
@[reducible, inline]
Dot notation for the value of lightProfiniteToLightCondSet.
Equations
Instances For
The functor from LightProfinite to LightCondSet factors through TopCat.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom
(X : LightProfinite)
(X✝ : LightProfiniteᵒᵖ)
(a✝ :
((CategoryTheory.sheafToPresheaf (CategoryTheory.coherentTopology LightProfinite) (Type u)).obj
((LightProfinite.toTopCat.comp topCatToLightCondSet).obj X)).obj
X✝)
:
TopCat.Hom.hom ((lightProfiniteToLightCondSetIsoTopCatToLightCondSet.inv.app X).val.app X✝ a✝).hom = a✝
@[simp]
theorem
lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply
(X : LightProfinite)
(X✝ : LightProfiniteᵒᵖ)
(a✝ :
((CategoryTheory.sheafToPresheaf (CategoryTheory.coherentTopology LightProfinite) (Type u)).obj
(lightProfiniteToLightCondSet.obj X)).obj
X✝)
(a : ↑(Opposite.unop X✝).toTop)
:
((lightProfiniteToLightCondSetIsoTopCatToLightCondSet.hom.app X).val.app X✝ a✝) a = (CategoryTheory.ConcreteCategory.hom a✝.hom) a
instance
instPreservesLimitsOfShapeLightProfiniteLightCondSetLightProfiniteToLightCondSetOfCountableCategory
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.CountableCategory J]
:
The functor from LightProfinite to LightCondSet preserves countable limits.
The functor from LightProfinite to LightCondSet preserves finite limits.
@[instance_reducible]
The functor from LightProfinite to LightCondSet is monoidal with respect to the cartesian
monoidal structure.