HasSheafify instances #
In this file, we obtain a HasSheafify (coherentTopology LightProfinite.{u}) (Type u)
instance (and similarly for other concrete categories). These instances
are not obtained automatically because LightProfinite.{u} is a large category,
but as it is essentially small, the instances can be obtained using the results
in the file CategoryTheory.Sites.Equivalence.
instance
LightProfinite.hasSheafify
(A : Type u')
[CategoryTheory.Category.{u, u'} A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.HasColimits A]
{FA : A → A → Type v}
{CA : A → Type u}
[(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)]
[CategoryTheory.ConcreteCategory A FA]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[(CategoryTheory.forget A).ReflectsIsomorphisms]
:
instance
LightProfinite.instWEqualsLocallyBijectiveCoherentTopology
(A : Type u')
[CategoryTheory.Category.{u, u'} A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.HasColimits A]
{FA : A → A → Type v}
{CA : A → Type u}
[(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)]
[CategoryTheory.ConcreteCategory A FA]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[(CategoryTheory.forget A).ReflectsIsomorphisms]
: