Documentation

Mathlib.Data.ENat.Pow

Powers of extended natural numbers #

We define the power of an extended natural x : ℕ∞ by another extended natural y : ℕ∞. The definition is chosen such that x ^ y is the cardinality of α → β, when β has cardinality x and α has cardinality y:

Naming convention #

The quantity x ^ y for x, y : ℕ∞ is defined as a Pow instance. It is called epow in lemmas' names.

Equations
@[simp]
theorem ENat.epow_natCast {x : ℕ∞} {y : } :
x ^ y = x ^ y
@[simp]
theorem ENat.zero_epow_top :
0 ^ = 0
theorem ENat.zero_epow {y : ℕ∞} (h : y 0) :
0 ^ y = 0
@[simp]
theorem ENat.one_epow {y : ℕ∞} :
1 ^ y = 1
theorem ENat.top_epow {y : ℕ∞} (h : y 0) :
@[simp]
theorem ENat.epow_zero {x : ℕ∞} :
x ^ 0 = 1
@[simp]
theorem ENat.epow_one {x : ℕ∞} :
x ^ 1 = x
theorem ENat.epow_top {x : ℕ∞} (h : 1 < x) :
theorem ENat.epow_right_mono {x : ℕ∞} (h : x 0) :
Monotone fun (y : ℕ∞) => x ^ y
theorem ENat.one_le_epow {x y : ℕ∞} (h : x 0) :
1 x ^ y
theorem ENat.epow_left_mono {y : ℕ∞} :
Monotone fun (x : ℕ∞) => x ^ y
theorem ENat.epow_eq_zero_iff {x y : ℕ∞} :
x ^ y = 0 x = 0 y 0
theorem ENat.epow_eq_one_iff {x y : ℕ∞} :
x ^ y = 1 x = 1 y = 0
theorem ENat.epow_add {x y z : ℕ∞} :
x ^ (y + z) = x ^ y * x ^ z
theorem ENat.mul_epow {x y z : ℕ∞} :
(x * y) ^ z = x ^ z * y ^ z
theorem ENat.epow_mul {x y z : ℕ∞} :
x ^ (y * z) = (x ^ y) ^ z