Successors and predecessors of Fin n
#
In this file, we show that Fin n
is both a SuccOrder
and a PredOrder
. Note that they are
also archimedean, but this is derived from the general instance for well-orderings as opposed
to a specific Fin
instance.
Equations
- Fin.instSuccOrder = { succ := fun (a : Fin 0) => a.elim0, le_succ := Fin.instSuccOrder.proof_1, max_of_succ_le := @Fin.instSuccOrder.proof_2, succ_le_of_lt := @Fin.instSuccOrder.proof_3 }
- Fin.instSuccOrder = SuccOrder.ofCore (fun (i : Fin (n + 1)) => if i < Fin.last n then i + 1 else i) ⋯ ⋯
@[simp]
@[simp]
theorem
Fin.succ_apply
{n : ℕ}
(a : Fin (n + 1))
:
SuccOrder.succ a = if a < last n then a + 1 else a
Equations
- Fin.instPredOrder = { pred := fun (a : Fin 0) => a.elim0, pred_le := Fin.instPredOrder.proof_1, min_of_le_pred := @Fin.instPredOrder.proof_2, le_pred_of_lt := @Fin.instPredOrder.proof_3 }
- Fin.instPredOrder = PredOrder.ofCore (fun (x : Fin (n + 1)) => if x = 0 then 0 else x - 1) ⋯ ⋯
@[simp]
@[simp]