Currying and uncurrying of n-ary functions #
A function of n
arguments can either be written as f a₁ a₂ ⋯ aₙ
or f' ![a₁, a₂, ⋯, aₙ]
.
This file provides the currying and uncurrying operations that convert between the two, as
n-ary generalizations of the binary curry
and uncurry
.
Main definitions #
Function.OfArity.uncurry
: convert ann
-ary function to a function fromFin n → α
.Function.OfArity.curry
: convert a function fromFin n → α
to ann
-ary function.Function.FromTypes.uncurry
: convert anp
-ary heterogeneous function to a function from(i : Fin n) → p i
.Function.FromTypes.curry
: convert a function from(i : Fin n) → p i
to ap
-ary heterogeneous function.
def
Function.FromTypes.uncurry
{n : ℕ}
{p : Fin n → Type u}
{τ : Type u}
(f : FromTypes p τ)
:
((i : Fin n) → p i) → τ
Uncurry all the arguments of Function.FromTypes p τ
to get
a function from a tuple.
Note this can be used on raw functions if used.
Equations
Instances For
Curry all the arguments of Function.FromTypes p τ
to get a function from a tuple.
Equations
- Function.FromTypes.curry x✝ = x✝ fun (a : Fin 0) => isEmptyElim a
- Function.FromTypes.curry x✝ = fun (a : Matrix.vecHead x_4) => Function.FromTypes.curry fun (args : (i : Fin n) → Matrix.vecTail x_4 i) => x✝ (Fin.cons a args)
Instances For
Equiv.curry
for p
-ary heterogeneous functions.
Equations
- Function.FromTypes.curryEquiv p = { toFun := Function.FromTypes.curry, invFun := Function.FromTypes.uncurry, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
Function.FromTypes.curryEquiv_symm_apply
{n : ℕ}
{τ : Type u}
(p : Fin n → Type u)
(f : FromTypes p τ)
(a✝ : (i : Fin n) → p i)
:
(curryEquiv p).symm f a✝ = f.uncurry a✝
@[simp]
theorem
Function.FromTypes.curryEquiv_apply
{n : ℕ}
{τ : Type u}
(p : Fin n → Type u)
(a✝ : ((i : Fin n) → p i) → τ)
:
(curryEquiv p) a✝ = curry a✝
theorem
Function.FromTypes.curry_two_eq_curry
{p : Fin 2 → Type u}
{τ : Type u}
(f : ((i : Fin 2) → p i) → τ)
:
curry f = Function.curry (f ∘ ⇑(piFinTwoEquiv p).symm)
theorem
Function.FromTypes.uncurry_two_eq_uncurry
(p : Fin 2 → Type u)
(τ : Type u)
(f : FromTypes p τ)
:
f.uncurry = Function.uncurry f ∘ ⇑(piFinTwoEquiv p)
Uncurry all the arguments of Function.OfArity α n
to get a function from a tuple.
Note this can be used on raw functions if used.
Equations
- f.uncurry = Function.FromTypes.uncurry f
Instances For
Curry all the arguments of Function.OfArity α β n
to get a function from a tuple.
Equations
Instances For
Equiv.curry
for n-ary functions.
Equations
- Function.OfArity.curryEquiv n = Function.FromTypes.curryEquiv fun (a : Fin n) => α
Instances For
@[simp]
theorem
Function.OfArity.curryEquiv_symm_apply
{α β : Type u}
(n : ℕ)
(f : FromTypes (fun (a : Fin n) => α) β)
(a✝ : Fin n → α)
:
(curryEquiv n).symm f a✝ = f.uncurry a✝
@[simp]
theorem
Function.OfArity.curryEquiv_apply
{α β : Type u}
(n : ℕ)
(a✝ : (Fin n → α) → β)
:
(curryEquiv n) a✝ = FromTypes.curry a✝
theorem
Function.OfArity.curry_two_eq_curry
{α β : Type u}
(f : (Fin 2 → α) → β)
:
curry f = Function.curry (f ∘ ⇑(finTwoArrowEquiv α).symm)
theorem
Function.OfArity.uncurry_two_eq_uncurry
{α β : Type u}
(f : OfArity α β 2)
:
f.uncurry = Function.uncurry f ∘ ⇑(finTwoArrowEquiv α)