Documentation

Mathlib.Data.FinEnum.Option

FinEnum instance for Option #

Provides a recursor for FinEnum types like Fintype.truncRecEmptyOption, but capable of producing non-truncated data.

TODO #

def FinEnum.insertNone (α : Type u) [FinEnum α] (i : Fin (card α + 1)) :

Inserting an Option.none anywhere in an enumeration yields another enumeration.

Equations
Instances For

    This is an arbitrary choice of insertion rank for a default instance. It keeps the mapping of the existing α-inhabitants intact, modulo Fin.castSucc.

    Equations
    @[irreducible]
    def FinEnum.recEmptyOption {P : Type u → Sort v} (finChoice : (n : ) → Fin (n + 1)) (congr : {α β : Type u} → (x : FinEnum α) → (x_1 : FinEnum β) → card β = card αP αP β) (empty : P PEmpty.{u + 1}) (option : {α : Type u} → FinEnum αP αP (Option α)) (α : Type u) [FinEnum α] :
    P α

    A recursor principle for finite-and-enumerable types, analogous to Nat.rec. It effectively says that every FinEnum is either Empty or Option α, up to an Equiv mediated by Fins of equal cardinality. In contrast to the Fintype case, data can be transported along such an Equiv. Also, since order matters, the choice of element that gets replaced by Option.none has to be provided for every step.

    Since every FinEnum instance implies a Fintype instance and Prop is squashed already, Fintype.induction_empty_option can be used if a Prop needs to be constructed. Cf. Data.Fintype.Option

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem FinEnum.recEmptyOption_of_card_eq_zero {P : Type u → Sort v} (finChoice : (n : ) → Fin (n + 1)) (congr : {α β : Type u} → (x : FinEnum α) → (x_1 : FinEnum β) → card β = card αP αP β) (empty : P PEmpty.{u + 1}) (option : {α : Type u} → FinEnum αP αP (Option α)) (α : Type u) [FinEnum α] (h : card α = 0) (x✝ : FinEnum PEmpty.{u + 1}) :
      recEmptyOption finChoice (fun {α β : Type u} => congr) empty (fun {α : Type u} => option) α = congr x✝ inst✝ empty

      For an empty type, the recursion principle evaluates to whatever congr makes of the base case.

      theorem FinEnum.recEmptyOption_of_card_pos {P : Type u → Sort v} (finChoice : (n : ) → Fin (n + 1)) (congr : {α β : Type u} → (x : FinEnum α) → (x_1 : FinEnum β) → card β = card αP αP β) (empty : P PEmpty.{u + 1}) (option : {α : Type u} → FinEnum αP αP (Option α)) (α : Type u) [FinEnum α] (h : 0 < card α) :
      recEmptyOption finChoice (fun {α β : Type u} => congr) empty (fun {α : Type u} => option) α = congr (insertNone (ULift.{u, 0} (Fin (card α - 1))) (finChoice (card α - 1))) inst✝ (option ULift.instFinEnum (recEmptyOption finChoice (fun {α β : Type u} => congr) empty (fun {α : Type u} => option) (ULift.{u, 0} (Fin (card α - 1)))))

      For a type with positive card, the recursion principle evaluates to whatever congr makes of the step result, where Option.none has been inserted into the (finChoice (card α - 1))th rank of the enumeration.

      @[reducible, inline]
      abbrev FinEnum.recOnEmptyOption {P : Type u → Sort v} {α : Type u} (aenum : FinEnum α) (finChoice : (n : ) → Fin (n + 1)) (congr : {α β : Type u} → (x : FinEnum α) → (x_1 : FinEnum β) → card β = card αP αP β) (empty : P PEmpty.{u + 1}) (option : {α : Type u} → FinEnum αP αP (Option α)) :
      P α

      A recursor principle for finite-and-enumerable types, analogous to Nat.recOn. It effectively says that every FinEnum is either Empty or Option α, up to an Equiv mediated by Fins of equal cardinality. In contrast to the Fintype case, data can be transported along such an Equiv. Also, since order matters, the choice of element that gets replaced by Option.none has to be provided for every step.

      Equations
      • aenum.recOnEmptyOption finChoice congr empty option = FinEnum.recEmptyOption finChoice (fun {α β : Type ?u.96} => congr) empty (fun {α : Type ?u.96} => option) α
      Instances For