Disjoint finite sets #
Main declarations #
Disjoint
: defined via the lattice structure on finsets; two sets are disjoint if their intersection is empty.Finset.disjUnion
: the union of the finite setss
andt
, given a proofDisjoint s t
Tags #
finite sets, finset
disjoint #
Equations
- U.decidableDisjoint V = decidable_of_iff (∀ ⦃a : α⦄, a ∈ U → a ∉ V) ⋯
disjoint union #
theorem
Finset.singleton_disjUnion
{α : Type u_1}
(a : α)
(t : Finset α)
(h : Disjoint {a} t)
:
{a}.disjUnion t h = Finset.cons a t ⋯
theorem
Finset.disjUnion_singleton
{α : Type u_1}
(s : Finset α)
(a : α)
(h : Disjoint s {a})
:
s.disjUnion {a} h = Finset.cons a s ⋯
insert #
@[simp]
@[simp]
@[simp]
@[simp]