Documentation

Mathlib.Data.Finset.MulAntidiagonal

Multiplication antidiagonal as a Finset. #

We construct the Finset of all pairs of an element in s and an element in t that multiply to a, given that s and t are well-ordered.

theorem Set.IsPWO.add {α : Type u_1} {s : Set α} {t : Set α} [OrderedCancelAddCommMonoid α] (hs : Set.IsPWO s) (ht : Set.IsPWO t) :
Set.IsPWO (s + t)
theorem Set.IsPWO.mul {α : Type u_1} {s : Set α} {t : Set α} [OrderedCancelCommMonoid α] (hs : Set.IsPWO s) (ht : Set.IsPWO t) :
Set.IsPWO (s * t)
theorem Set.IsWF.add {α : Type u_1} {s : Set α} {t : Set α} [LinearOrderedCancelAddCommMonoid α] (hs : Set.IsWF s) (ht : Set.IsWF t) :
Set.IsWF (s + t)
theorem Set.IsWF.mul {α : Type u_1} {s : Set α} {t : Set α} [LinearOrderedCancelCommMonoid α] (hs : Set.IsWF s) (ht : Set.IsWF t) :
Set.IsWF (s * t)
theorem Set.IsWF.min_add {α : Type u_1} {s : Set α} {t : Set α} [LinearOrderedCancelAddCommMonoid α] (hs : Set.IsWF s) (ht : Set.IsWF t) (hsn : Set.Nonempty s) (htn : Set.Nonempty t) :
Set.IsWF.min = Set.IsWF.min hs hsn + Set.IsWF.min ht htn
theorem Set.IsWF.min_mul {α : Type u_1} {s : Set α} {t : Set α} [LinearOrderedCancelCommMonoid α] (hs : Set.IsWF s) (ht : Set.IsWF t) (hsn : Set.Nonempty s) (htn : Set.Nonempty t) :
Set.IsWF.min = Set.IsWF.min hs hsn * Set.IsWF.min ht htn
noncomputable def Finset.addAntidiagonal {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} (hs : Set.IsPWO s) (ht : Set.IsPWO t) (a : α) :
Finset (α × α)

Finset.addAntidiagonal hs ht a is the set of all pairs of an element in s and an element in t that add to a, but its construction requires proofs that s and t are well-ordered.

Equations
Instances For
    noncomputable def Finset.mulAntidiagonal {α : Type u_1} [OrderedCancelCommMonoid α] {s : Set α} {t : Set α} (hs : Set.IsPWO s) (ht : Set.IsPWO t) (a : α) :
    Finset (α × α)

    Finset.mulAntidiagonal hs ht a is the set of all pairs of an element in s and an element in t that multiply to a, but its construction requires proofs that s and t are well-ordered.

    Equations
    Instances For
      @[simp]
      theorem Finset.mem_addAntidiagonal {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} {a : α} {x : α × α} :
      x Finset.addAntidiagonal hs ht a x.1 s x.2 t x.1 + x.2 = a
      @[simp]
      theorem Finset.mem_mulAntidiagonal {α : Type u_1} [OrderedCancelCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} {a : α} {x : α × α} :
      x Finset.mulAntidiagonal hs ht a x.1 s x.2 t x.1 * x.2 = a
      theorem Finset.addAntidiagonal_mono_left {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} {a : α} {u : Set α} {hu : Set.IsPWO u} (h : u s) :
      theorem Finset.mulAntidiagonal_mono_left {α : Type u_1} [OrderedCancelCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} {a : α} {u : Set α} {hu : Set.IsPWO u} (h : u s) :
      theorem Finset.addAntidiagonal_mono_right {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} {a : α} {u : Set α} {hu : Set.IsPWO u} (h : u t) :
      theorem Finset.mulAntidiagonal_mono_right {α : Type u_1} [OrderedCancelCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} {a : α} {u : Set α} {hu : Set.IsPWO u} (h : u t) :
      theorem Finset.swap_mem_addAntidiagonal {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} {a : α} {x : α × α} :
      theorem Finset.swap_mem_mulAntidiagonal {α : Type u_1} [OrderedCancelCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} {a : α} {x : α × α} :
      theorem Finset.support_addAntidiagonal_subset_add {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} :
      {a : α | (Finset.addAntidiagonal hs ht a).Nonempty} s + t
      abbrev Finset.support_addAntidiagonal_subset_add.match_1 {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} (a : α) (motive : a {a : α | (Finset.addAntidiagonal hs ht a).Nonempty}Prop) :
      ∀ (x : a {a : α | (Finset.addAntidiagonal hs ht a).Nonempty}), (∀ (b : α × α) (hb : b Finset.addAntidiagonal hs ht a), motive )motive x
      Equations
      • =
      Instances For
        theorem Finset.support_mulAntidiagonal_subset_mul {α : Type u_1} [OrderedCancelCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} :
        {a : α | (Finset.mulAntidiagonal hs ht a).Nonempty} s * t
        theorem Finset.isPWO_support_addAntidiagonal {α : Type u_1} [OrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} :
        Set.IsPWO {a : α | (Finset.addAntidiagonal hs ht a).Nonempty}
        theorem Finset.isPWO_support_mulAntidiagonal {α : Type u_1} [OrderedCancelCommMonoid α] {s : Set α} {t : Set α} {hs : Set.IsPWO s} {ht : Set.IsPWO t} :
        Set.IsPWO {a : α | (Finset.mulAntidiagonal hs ht a).Nonempty}
        theorem Finset.addAntidiagonal_min_add_min {α : Type u_2} [LinearOrderedCancelAddCommMonoid α] {s : Set α} {t : Set α} (hs : Set.IsWF s) (ht : Set.IsWF t) (hns : Set.Nonempty s) (hnt : Set.Nonempty t) :
        Finset.addAntidiagonal (Set.IsWF.min hs hns + Set.IsWF.min ht hnt) = {(Set.IsWF.min hs hns, Set.IsWF.min ht hnt)}
        theorem Finset.mulAntidiagonal_min_mul_min {α : Type u_2} [LinearOrderedCancelCommMonoid α] {s : Set α} {t : Set α} (hs : Set.IsWF s) (ht : Set.IsWF t) (hns : Set.Nonempty s) (hnt : Set.Nonempty t) :
        Finset.mulAntidiagonal (Set.IsWF.min hs hns * Set.IsWF.min ht hnt) = {(Set.IsWF.min hs hns, Set.IsWF.min ht hnt)}