r
-sets and slice #
This file defines the r
-th slice of a set family and provides a way to say that a set family is
made of r
-sets.
An r
-set is a finset of cardinality r
(aka of size r
). The r
-th slice of a set family is
the set family made of its r
-sets.
Main declarations #
Set.Sized
:A.Sized r
means thatA
only containsr
-sets.Finset.slice
:A.slice r
is the set ofr
-sets inA
.
Notation #
A # r
is notation for A.slice r
in locale finset_family
.
Families of r
-sets #
theorem
Set.Sized.isAntichain
{α : Type u_1}
{A : Set (Finset α)}
{r : ℕ}
(hA : Sized r A)
:
IsAntichain (fun (x1 x2 : Finset α) => x1 ⊆ x2) A
theorem
Set.Sized.subsingleton'
{α : Type u_1}
{A : Set (Finset α)}
[Fintype α]
(hA : Sized (Fintype.card α) A)
:
theorem
Set.sized_powersetCard
{α : Type u_1}
(s : Finset α)
(r : ℕ)
:
Sized r ↑(Finset.powersetCard r s)
theorem
Set.Sized.subset_powersetCard_univ
{α : Type u_1}
[Fintype α]
{𝒜 : Finset (Finset α)}
{r : ℕ}
:
Sized r ↑𝒜 → 𝒜 ⊆ Finset.powersetCard r Finset.univ
Alias of the reverse direction of Finset.subset_powersetCard_univ_iff
.
Slices #
The r
-th slice of a set family is the subset of its elements which have cardinality r
.
Equations
- Finset.«term_#_» = Lean.ParserDescr.trailingNode `Finset.«term_#_» 90 90 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " # ") (Lean.ParserDescr.cat `term 91))
Instances For
@[simp]