Declarations about finitely supported functions whose support is an Option
type p #
Main declarations #
Finsupp.some
: restrict a finitely supported function onOption α
to a finitely supported function onα
.
Implementation notes #
This file is a noncomputable theory
and uses classical logic throughout.
@[simp]
@[simp]
theorem
Finsupp.prod_option_index
{α : Type u_1}
{M : Type u_5}
{N : Type u_7}
[AddZeroClass M]
[CommMonoid N]
(f : Option α →₀ M)
(b : Option α → M → N)
(h_zero : ∀ (o : Option α), b o 0 = 1)
(h_add : ∀ (o : Option α) (m₁ m₂ : M), b o (m₁ + m₂) = b o m₁ * b o m₂)
:
theorem
Finsupp.sum_option_index
{α : Type u_1}
{M : Type u_5}
{N : Type u_7}
[AddZeroClass M]
[AddCommMonoid N]
(f : Option α →₀ M)
(b : Option α → M → N)
(h_zero : ∀ (o : Option α), b o 0 = 0)
(h_add : ∀ (o : Option α) (m₁ m₂ : M), b o (m₁ + m₂) = b o m₁ + b o m₂)
:
@[simp]
@[simp]