Embedding a finitely supported function into a sigma type summand #
This file provides Finsupp.embSigma, which embeds a finitely supported function ι k →₀ M
into the corresponding summand of (Σ k, ι k) →₀ M.
Main declarations #
Finsupp.embSigma: Embedι k →₀ Minto(Σ k, ι k) →₀ Mfor a specifick.
Implementation notes #
This is a special case of Finsupp.embDomain using Function.Embedding.sigmaMk.
def
Finsupp.embSigma
{κ : Type u_1}
{ι : κ → Type u_2}
{M : Type u_3}
[Zero M]
{k : κ}
(f : ι k →₀ M)
:
Embed a finitely supported function f : ι k →₀ M into the k-th summand
of the sigma type (Σ k, ι k) →₀ M.
This is Finsupp.embDomain specialized to Function.Embedding.sigmaMk k.
Equations
Instances For
theorem
Finsupp.embSigma_injective
{κ : Type u_1}
{ι : κ → Type u_2}
{M : Type u_3}
[Zero M]
{k : κ}
: