Documentation
Mathlib
.
Data
.
List
.
Lookmap
Search
return to top
source
Imports
Init
Batteries.Logic
Mathlib.Tactic.Cases
Mathlib.Tactic.TypeStar
Batteries.Data.List.Basic
Imported by
List
.
lookmap_nil
List
.
lookmap_cons_none
List
.
lookmap_cons_some
List
.
lookmap_some
List
.
lookmap_none
List
.
lookmap_congr
List
.
lookmap_of_forall_not
List
.
lookmap_map_eq
List
.
lookmap_id'
List
.
length_lookmap
List
.
perm_lookmap
lookmap
#
source
@[simp]
theorem
List
.
lookmap_nil
{α :
Type
u_1}
(f :
α
→
Option
α
)
:
lookmap
f
[
]
=
[
]
source
@[simp]
theorem
List
.
lookmap_cons_none
{α :
Type
u_1}
(f :
α
→
Option
α
)
{a :
α
}
(l :
List
α
)
(h :
f
a
=
none
)
:
lookmap
f
(
a
::
l
)
=
a
::
lookmap
f
l
source
@[simp]
theorem
List
.
lookmap_cons_some
{α :
Type
u_1}
(f :
α
→
Option
α
)
{a b :
α
}
(l :
List
α
)
(h :
f
a
=
some
b
)
:
lookmap
f
(
a
::
l
)
=
b
::
l
source
theorem
List
.
lookmap_some
{α :
Type
u_1}
(l :
List
α
)
:
lookmap
some
l
=
l
source
theorem
List
.
lookmap_none
{α :
Type
u_1}
(l :
List
α
)
:
lookmap
(fun (
x
:
α
) =>
none
)
l
=
l
source
theorem
List
.
lookmap_congr
{α :
Type
u_1}
{f g :
α
→
Option
α
}
{l :
List
α
}
:
(∀ (
a
:
α
),
a
∈
l
→
f
a
=
g
a
)
→
lookmap
f
l
=
lookmap
g
l
source
theorem
List
.
lookmap_of_forall_not
{α :
Type
u_1}
(f :
α
→
Option
α
)
{l :
List
α
}
(H :
∀ (
a
:
α
),
a
∈
l
→
f
a
=
none
)
:
lookmap
f
l
=
l
source
theorem
List
.
lookmap_map_eq
{α :
Type
u_1}
{β :
Type
u_2}
(f :
α
→
Option
α
)
(g :
α
→
β
)
(h :
∀ (
a
b
:
α
),
b
∈
f
a
→
g
a
=
g
b
)
(l :
List
α
)
:
map
g
(
lookmap
f
l
)
=
map
g
l
source
theorem
List
.
lookmap_id'
{α :
Type
u_1}
(f :
α
→
Option
α
)
(h :
∀ (
a
b
:
α
),
b
∈
f
a
→
a
=
b
)
(l :
List
α
)
:
lookmap
f
l
=
l
source
theorem
List
.
length_lookmap
{α :
Type
u_1}
(f :
α
→
Option
α
)
(l :
List
α
)
:
(
lookmap
f
l
)
.
length
=
l
.
length
source
theorem
List
.
perm_lookmap
{α :
Type
u_1}
(f :
α
→
Option
α
)
{l₁ l₂ :
List
α
}
(H :
Pairwise
(fun (
a
b
:
α
) =>
∀ (
c
:
α
),
c
∈
f
a
→
∀ (
d
:
α
),
d
∈
f
b
→
a
=
b
∧
c
=
d
)
l₁
)
(p :
l₁
.
Perm
l₂
)
:
(
lookmap
f
l₁
)
.
Perm
(
lookmap
f
l₂
)