Documentation

Mathlib.Data.List.Lookmap

lookmap #

@[simp]
theorem List.lookmap_nil {α : Type u_1} (f : αOption α) :
@[simp]
theorem List.lookmap_cons_none {α : Type u_1} (f : αOption α) {a : α} (l : List α) (h : f a = none) :
lookmap f (a :: l) = a :: lookmap f l
@[simp]
theorem List.lookmap_cons_some {α : Type u_1} (f : αOption α) {a b : α} (l : List α) (h : f a = some b) :
lookmap f (a :: l) = b :: l
theorem List.lookmap_some {α : Type u_1} (l : List α) :
theorem List.lookmap_none {α : Type u_1} (l : List α) :
lookmap (fun (x : α) => none) l = l
theorem List.lookmap_congr {α : Type u_1} {f g : αOption α} {l : List α} :
(∀ (a : α), a lf a = g a)lookmap f l = lookmap g l
theorem List.lookmap_of_forall_not {α : Type u_1} (f : αOption α) {l : List α} (H : ∀ (a : α), a lf a = none) :
lookmap f l = l
theorem List.lookmap_map_eq {α : Type u_1} {β : Type u_2} (f : αOption α) (g : αβ) (h : ∀ (a b : α), b f ag a = g b) (l : List α) :
map g (lookmap f l) = map g l
theorem List.lookmap_id' {α : Type u_1} (f : αOption α) (h : ∀ (a b : α), b f aa = b) (l : List α) :
lookmap f l = l
theorem List.length_lookmap {α : Type u_1} (f : αOption α) (l : List α) :
theorem List.perm_lookmap {α : Type u_1} (f : αOption α) {l₁ l₂ : List α} (H : Pairwise (fun (a b : α) => ∀ (c : α), c f a∀ (d : α), d f ba = b c = d) l₁) (p : l₁.Perm l₂) :
(lookmap f l₁).Perm (lookmap f l₂)